An Evaluation of the Seasonal Caribbean Hydroclimate under various CESM and other CMIP6 Models CVWG Winter Meeting

Carlos Martinez, ASP Postdoc II, CGD/MMM

Isla Simpson, CGD John Fasullo, CGD Andy Prein, MMM

February 21st, 2023

carlosm@ucar.edu @carlonimbus CarlosJavierMartinez.com

The Caribbean: A highly vulnerable region to Climate Variability and Change

Between 1970 and 2000, the Caribbean region suffered direct and indirect losses estimated between \$700 million and \$3.3 billion due to natural disasters associated with weather and climate events - Food and Agricultural Organization (FAO, 2016)

Farmers, tourism industry, etc. look to their local weather and climate service for forecasts on rainfall

Recent work developed a refined and comprehensive understanding of the Caribbean Rainfall Cycle

Subregions of the Caribbean from Martinez et al. 2019 and 2020

NCAR | Martinez et al. 2019: Seasonal Climatology and UCAR | Dynamical Mechanisms of Rainfall in the Caribbean

Main Ingredients:

Intertropical Convergence Zone (ITCZ) (Henderson-Sellers and Robinson, 1986),

North Atlantic Subtropical High (NASH) / Trade Winds (Davis et al. 1997)

Regional Modifiers: Atlantic Warm Pool (AWP) (Wang et al. 2006)

Caribbean Low-Level Jet (CLLJ) (Amador, 1998)

Easterly Waves / Tropical Cyclones, Frontal Systems (Burpee 1972)

Local forces (i.e. orographic lifting, sea breezes, etc).

ITCZ ITCZ 3 -

NCARMartinez et al. 2019: Seasonal Climatology and DynamicalUCARMechanisms of Rainfall in the Caribbean

Mission

This refined understanding has yet to be explored in modeling studies over the Caribbean/Central America (e.g., looking at the region on a subregional and seasonal lens)

Has yet to be a model evaluation study in the Caribbean that uses the new simulations of CESM and CMIP6

Questions and Objectives

- How well do global circulation models (GCMs) simulate the Caribbean rainfall cycle and its dynamical mechanisms?
- Do the models perform better over ocean-only grid spaces (where there is less complexity such as topography) than land-only grid spaces? Vice versa?
- Are any biases specific to a sub-region of the Caribbean? Or general to the entire basin?
- Is there a relationship between model resolution and precipitation estimates when comparing the observed precipitation values?

Datasets

- CESM
 - CESM1 and 2LENS and AMIP (GOGA) runs
 - High-Resolution CESM (iHESP) and AMIP

AMIP = Sea-Surface Temperature was prescribed into model (Atmospheric Response only)

Fully-Coupled = Ocean and Atmosphere Response

- CMIP6HighResMIP
 - Low-Resolution and High-Resolution versions of the same model

Observations

Gridded Precipitation	
PERSIANN-CDR	0.25x0.25 deg
PERSIANN-CCS-CDR	0.04x0.04 deg
MSWEPv2	0.1x0.1 deg
CHIRPSv2	0.05x0.05deg
GPCC	0.25x0.25 deg
ERA5	0.25x0.25deg
Station Precipitation	
CIMH/GHCN	46 stations

CESM	# of Members used	Resolution (Atmospheric Model)	Atmospheric Model
CESM1LENS	40	0.90x1.25 deg	CAM5
CESM1GOGA	10	0.90x1.25 deg	CAM5
CESM2LENS (CMIP6)	50	0.90x1.25 deg	CAM6
CESM2GOGA	10	0.90x1.25 deg	CAM6
HRCESM (IHESP)	1	0.25x0.25 deg	(CESM1.3) CAM5
HRCESM-AMIP (IHESP)	1	0.25x0.25 deg	(CESM1.3) CAM5
CMIP6HghResMIP	# of Members used	Resolution (Atmospheric Model)	
CNRM-CM6-1	1	1.40x1.40 deg	ARPEGE6.3
CNRM-CM6-1-HR	1	0.50x0.50 deg	ARPEGE6.3
FGOALS-f3-L	1	1.00x1.25 deg	FAMIL2.2
FGOALS-f3-H	1	0.25x0.25 deg	FAMIL2.2
HIRAM-SIT-LR	1	0.50x0.50deg	GFDL-HIRAM
HIRAM-SIT-HR	1	0.25x0.25 deg	GFDL-HIRAM
EC-Earth3P	1	0.70x0.70 deg	IFS cy36r4
EC-Earth3P-HR	1	0.35x0.35 deg	IFS cy36r4
ECMWF-IFS-LR	1	1.00x1.00 deg	IFS cyc43r1
ECMWF-IFS-HR	1	0.50x0.50 deg	IFS cyc43r1
HadGEM3-GC31-MM	1	0.56x0.83 deg	MetUM
HadGEM3-GC31-HH	1	0.23x0.35 deg	MetUM
CMCC-CM2-HR	1	1.00x1.00 deg	CAM4
CMCC-CM2-VHR	1	0.25x0.25 deg	CAM4
MPI-ESM1-2-HR	1	1.00x1.00 deg	ECHAM6.3
MPI-ESM1-2-XR	1	0.5x0.5 deg	ECHAM6.3
BCC-CSM2-HR	1	0.45x0.45 deg	BCC_AGCM3_HR
Other			
GFDL-SPEAR-MED	30	0.50x0.50 deg	GFDL-AM4C192

Land vs. Ocean Caribbean Hydroclimate between observations and models

(Focusing on the Early-Rainy Season (April-June))

Central Caribbean Land ERS Precipitation Totals

Early-Rainy Season Totals (mm)

Central Caribbean (Land-Only Precipitation)

Fully Coupled

AMIP

Land vs. Ocean Precipitation Scatterplots

Model Spatial Regression / Scatterplots of Dynamical Variables onto Precipitation Index All models regridded to 0.25x0.25-degree resolution

Less SLP = More Precipitation Totals

NCAR **UCAR** Carlosjaviermartinez.com **Total Moisture Budget Analysis**

AMIP minus Fully Coupled May Moisture Flux and SST Composite

Conclusions/Summary

- Generally, most coupled models underestimate ERS land and ocean precipitation across the Caribbean.
- Coupled models also show a stronger and/or westward shift of the North Atlantic Subtropical High, which causes enhanced easterlies/divergence over the Caribbean basin.
- There is improvement of precipitation and large-scale dynamics when SSTs are prescribed to the model (AMIP).
- In several cases, High-Resolution estimate precipitation and dynamical variables closer to the observations/ERA5 than their Low-Resolution counterpart.
- These findings are similar during the Mid-Summer Drought and Late-Rainy Seasons

Model – AMIP October Composite

