Assessing the impact of stratospheric aerosol injection on warm spell characteristics under ARISE-SAI-1.5

Ivy Glade, James W. Hurrell Department of Atmospheric Science, Colorado State University, Fort Collins, CO

What are warm spells and why should we care about them?

- Warm spells are periods of anomalously high temperature that can occur at **any** time of the year

From Figure 7 of Sillmann et al. (2013)

What are warm spells and why should we care about them?

- Warm spells are periods of anomalously high temperature that can occur at **any** time of the year
- Potential impacts include:
 - Mortality and morbidity (Ebi et al. 2021)
 - Ecosystem vulnerability (Kreyling 2019)
 - Crop and livestock yields (Kerr et al. 2022)

CMIP5 mean change in WSDI (days) from 1981-2000 to 2081-2100 under RCP4.5

From Figure 7 of Sillmann et al. (2013)

What are warm spells and why should we care about them?

- Warm spells are periods of anomalously high temperature that can occur at **any** time of the year
- Potential impacts include:
 - Mortality and morbidity (Ebi et al. 2021)
 - Ecosystem vulnerability (Kreyling 2019)
 - Crop and livestock yields (Kerr et al. 2022)
- Warm spells are projected to increase in frequency as the climate continues to warm

CMIP5 mean change in WSDI (days) from 1981-2000 to 2081-2100 under RCP4.5

From Figure 7 of Sillmann et al. (2013)

Defining warm spells

- Daily maximum and minimum 2 m temperature (T_{max}, T_{min})
 - T_{min} is important because it provides insight on cumulative heat stress and heat related human health outcomes (e.g., Karl and Knight, 1997; Perkins and Alexander, 2013)

Defining warm spells

- Daily maximum and minimum 2 m temperature (T_{max}, T_{min})
 - T_{min} is important because it provides insight on cumulative heat stress and heat related human health outcomes (e.g., Karl and Knight, 1997; Perkins and Alexander, 2013)
- Warm spell: any period of \ge 6 consecutive days where the 90% threshold of
 - $T_{max}(T_{min})$ is exceeded, as in the ETCCDI (Zhang et al. 2011)
 - 90% threshold of T_{max} (T_{min}) is calculated for each calendar day using a 5-day window for the base period of 2020-2039

Defining warm spells

- Daily maximum and minimum 2 m temperature (T_{max}, T_{min})
 - T_{min} is important because it provides insight on cumulative heat stress and heat related human health outcomes (e.g., Karl and Knight, 1997; Perkins and Alexander, 2013)
- Warm spell: any period of \ge 6 consecutive days where the 90% threshold of
 - $T_{max}(T_{min})$ is exceeded, as in the ETCCDI (Zhang et al. 2011)
 - 90% threshold of T_{max} (T_{min}) is calculated for each calendar day using a 5-day window for the base period of 2020-2039
- Other characteristics (Fischer and Schar, 2010):
 - Warm spell days: count of days in a year that meet the above warm spell criterion
 - Warm spell duration: the maximum length (in days) of a warm spell event in a year
 - Warm spell amplitude: the maximum deviation (in °C) from the base period of T_{max} (T_{min}) that occurred during a warm spell in a year

climate intervention methods are not a replacement for climate mitigation

Earth-system models simulate future climates with and without SAI

- Such simulations have been used to assess how SAI might impact:
 - global mean temperature and precipitation (Hueholt et al. 2023; Richter et al. 2022)
 - Arctic sea ice loss (Goddard et al. 2023; Lee et al. 2023)
 - ecological responses (Hueholt et al. 2024; Zarnetske et al. 2021)

2 m temperature change

from Figure 4 of Richter et al. (2022)

Earth-system models simulate future climates with and without SAI

- Such simulations have been used to assess how SAI might impact:
 - global mean temperature and precipitation (Hueholt et al. 2023; Richter et al. 2022)
 - Arctic sea ice loss (Goddard et al. 2023; Lee et al. 2023)
 - ecological responses (Hueholt et al. 2024; Zarnetske et al. 2021)
- Some research has examined how SAI might impact extreme weather phenomena (e.g., Tye et al. 2022)

2 m temperature change

from Figure 4 of Richter et al. (2022)

Earth-system models simulate future climates with and without SAI

- Such simulations have been used to assess how SAI might impact:
 - global mean temperature and precipitation (Hueholt et al. 2023; Richter et al. 2022)
 - Arctic sea ice loss (Goddard et al. 2023; Lee et al. 2023)
 - ecological responses (Hueholt et al. 2024; Zarnetske et al. 2021)
- Some research has examined how SAI might impact extreme weather phenomena (e.g., Tye et al. 2022)
 - There has not been work that has examined how SAI might impact warm spell events at a global scale

2 m temperature change

from Figure 4 of Richter et al. (2022)

ARISE-SAI-1.5 is used to assess how SAI deployment might impact future projections of warm spell events

- CESM2(WACCM6) (Danabasoglu et al. 2020; Gettleman et al. 2019)
- Two 10-member ensembles (Eyring et al. 2016; Richter et al. 2022):
 - One follows SSP2-4.5 and runs from 2015-2069
 - One follows SSP2-4.5 and runs from 2035-2069, but has SAI deployment beginning in 2035

ARISE-SAI-1.5 is used to assess how SAI deployment might impact future projections of warm spell events

- CESM2(WACCM6) (Danabasoglu et al. 2020; Gettleman et al. 2019)
- Two 10-member ensembles (Eyring et al. 2016; Richter et al. 2022):
 - One follows SSP2-4.5 and runs from 2015-2069
 - One follows SSP2-4.5 and runs from 2035-2069, but has SAI deployment beginning in 2035

from Figure 3 of Richter et al. (2022)

Annual mean warm spell occurrence for 2020-2039

Warm spell occurrences increase under SSP2-4.5

Future increases in warm spell occurrence are mostly avoided when SAI is deployed in ARISE-SAI-1.5

The spatial pattern of warm spell day changes is similar to that of warm spell occurrence

The spatial pattern of warm spell day changes is similar to that of warm spell occurrence

Future increases in warm spell duration are largest at lower latitudes

There are small changes in warm spell duration under SAI that vary regionally

Warm spell amplitude is highest at high latitudes

Warm spell amplitude is the least impacted by climate warming compared to all other warm spell characteristics

Warm spell amplitude is the least impacted by climate warming compared to all other warm spell characteristics

Warm spell occurrences differ between CESM2 and UKESM1

There are small decreases in warm spell occurrence when SAI is deployed in UKESM1

- Future changes in warm spells defined by daily minimum temperature show greater changes than warm spells defined by daily maximum temperature
 - This could have important implications for human health

- Future changes in warm spells defined by daily minimum temperature show greater changes than warm spells defined by daily maximum temperature
 - This could have important implications for human health
- Increases in the the frequency of warm spell events projected under SSP2-4.5 are mostly avoided when SAI is deployed in ARISE-SAI-1.5.
 - This is also true of other warm spell characteristics including warm spell days, warm spell duration and warm spell amplitude

- Future changes in warm spells defined by daily minimum temperature show greater changes than warm spells defined by daily maximum temperature
 - This could have important implications for human health
- Increases in the the frequency of warm spell events projected under SSP2-4.5 are mostly avoided when SAI is deployed in ARISE-SAI-1.5.
 - This is also true of other warm spell characteristics including warm spell days, warm spell duration and warm spell amplitude
- There are distinct differences in warm spell projections under identical climate change and SAI scenarios using two different Earth-system models: CESM2 and UKESM1.

- Future changes in warm spells defined by daily minimum temperature show greater changes than warm spells defined by daily maximum temperature
 - This could have important implications for human health
- Increases in the the frequency of warm spell events projected under SSP2-4.5 are mostly avoided when SAI is deployed in ARISE-SAI-1.5.
 - This is also true of other warm spell characteristics including warm spell days, warm spell duration and warm spell amplitude
- There are distinct differences in warm spell projections under identical climate change and SAI scenarios using two different Earth-system models: CESM2 and UKESM1.
- Future work may investigate the physical drivers behind the differences in the spatial pattern of warm spell events in CESM2 and UKESM1