Year of significant emergence of changes in temperature over land regions (S/N>2)

Observational Uncertainty Delays the Detection of Regional Surface Warming Trends

Jonah Shaw¹ and Nathan Lenssen²

Climate Variability & Change Working Group Meeting

03.06.2024

¹Dept. Atmospheric and Oceanic Sciences and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder

²Colorado School of Mines, Golden, Colorado

Before 1981

981–1988

989–1996

997–2004

2005–2012

IPCC AR6 (2021)

Year of significant emergence of changes in temperature over land regions (S/N>2)

Dataset: Berkeley Earth. Temperature changes relative to 1850–1900.

Before 1981	1981–1988	1989–1996	1997–2004	2005–2012	2013–2020

IPCC AR6 (2021)

Tibetan-Plateau. Mean ToE: 1999, Strict ToE: 2003

Where does observational uncertainty delay climate change detection?

How does spatial averaging influence climate change detection?

TAKEAWAY: Delays are significant, but warming is still widely detected

- Global warming is widely detectable over the earth's surface even when observational uncertainty is accounted for.
- Observational uncertainty delays detection by 5+ years over 38% of the earth's surface and by 15+ years over 12% of the earth's surface.
 - Observational uncertainty ensembles make it possible to estimate the uncertainty of observed trends.

TAKEAWAY: Delays are significant, but warming is still widely detected

- Global warming is widely detectable over the earth's surface even when observational uncertainty is accounted for.
- Observational uncertainty delays detection by 5+ years over 38% of the earth's surface and by 15+ years over 12% of the earth's surface.
 - Observational uncertainty ensembles make it possible to estimate the uncertainty of observed trends.

jonah.shaw@colorado.edu

Where do models contribute uncertainty? Where do observational products contribute uncertainty?

Method Spread

δδ_{el})

Year of significant emergence of changes in temperature over land regions (S/N>2)

Observational Uncertainty Delays the Detection of Regional Surface Warming Trends

Jonah Shaw¹ and Nathan Lenssen²

Climate Variability & Change Working Group Meeting

03.06.2024

¹Dept. Atmospheric and Oceanic Sciences and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder

²Colorado School of Mines, Golden, Colorado

Before 1981

81–1988

989–1996

1997–2004

2005–2012

Misleading?

IPCC AR6 (2021)

Year of significant emergence of changes in temperature over land regions (S/N>2)

Observations detect regional surface warming trends, even when accounting for observational uncertainty.

Jonah Shaw¹ and Nathan Lenssen²

Climate Variability & Change Working Group Meeting

03.06.2024

¹Dept. Atmospheric and Oceanic Sciences and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder

²Colorado School of Mines, Golden, Colorado

Before 1981

981–1988

1989–1996

1997–200[,]

2005-2012

IPCC AR6 (2021)