Future activation of an Indian Ocean El Niño in the High Resolution CESM

Pedro DiNezio¹, Kaustubh Thirumalai², Ping Chang³, Sang-Ki Lee⁴ and collaborators.

¹CU Boulder, ²U. of Arizona, ³Texas A&M, ⁴NOAA/AOML

Record breaking cooling pattern in the Indian Ocean during SON 2023

Very rare events, only 2 occurred in the last 40 years

Two types of "dipole" events in the Indian Ocean

Equatorial / Basin wide

composite of 2 events since 1982 *3σ events*

Was the 2023 event a result of climate change?

SCIENCE ADVANCES • 6 May 2020 • Vol 6, Issue 19 • DOI: 10.1126/sciadv.aay7684

Is the activation of the equatorial mode an artifact of an overly active IO in models?

CESM1-LENS

0.2 0.4 0.6 0.8 1 1.2 1.4 **SON** σ**(SSTA)**(K)

CMIP-class models simulate too strong variability

CESM-HR simulates more realistic levels of variability

Improvement due to more narrow, realistic coastal upwelling

CESM-HR simulates equatorial events with realistic amplitude and frequency

CESM-HR predicts an increase in frequency of equatorial events

Conclusions

- Increasing horizontal resolution in CESM1 improves simulation of IO climate variability:
 - Realistic frequency and amplitude of equatorial events.
- High resolution CESM1 predicts large increase in climate variability in the IO:
 - ⁻Active by mid-century under high emission scenario,
 - –Increasing frequency of rainfall extremes in teleconnected regions.