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MZLINES - Multiscale Machine
Learning In Coupled Earth
System Modeling

MZLINES (pronounced M-square-lines) is an international
collaborative project with the goal of improving climate
projections, using scientific and interpretable Machine
Learning to capture unaccounted physical processes at
the air-sea-ice interface.
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Background - Data Assimilation

* DA combines a model first
guess (a short model forecast)
with observations in an optimal
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Balmaseda, Magdalena A. "Data assimilation for initialization of seasonal
forecasts." Journal of Marine Research 75.3 (2017): 331-359.




DA used to Identify Systematic Model Error
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(b)

Increments used to identify structural model error

Although the amplification of the effect of [INSERT FORCING] on [INSERT BIASED
PROCESS] will occur on timescales of decades, the intrinsic timescale associated with
[INSERT BIASED PROCESS] itself is typically on the order of hours. Hence it should in
principle be possible to assess whether the anomalously small values of [INSERT PROCESS]
are realistic or not, by studying the performance of such models in short-range weather
prediction mode.
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Watt-Meyer, Oliver, et al. "Correcting weather and climate models by machine learning
nudged historical simulations." Geophysical Research Letters 48.15 (2021): e2021GL092555.

A linear relaxation term is added to the prognostic equations of
certain variables. Where a is a prognostic variable, -v - Va is
advection by the model.



Two Error Learning “Pathways”
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Climatology of DA/Nudging Increments
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FIGURE 3 The zonal-mean v DA increments (ms~' d~ 1) in JJA (a, ¢) and DJF (b, d) for the DART (Row ) and
nudging system (Row I1). Contours show the v wind climatology [2 m s~ intervals, negative is dashed]. All fields are
averaged over the period 1982-2010.



Model Improvements

To what extent does re-inserting DA increments and nudging increments during model
runtime reduce climatological model bias of the free-running model?

CAM has STRONG biases in Precipitation and this is common across many models
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Improvement to Major Atm. Modes

Will representing subgrid-scale uncertainty in online increment corrections via stochasticity help to improve low-
frequency modes of variability without degrading mean state climatological bias?

NAO Stream Function Tendency Decomposition (10-1 day before peak event):
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*Linear Terms: Planetary vorticity advection by the anomaly + interaction of anomaly with zonal mean climo. flow + divergence term.




DA vs. Nudging Advantages / Disadvantages

* We find that the nudging increment adjustment outperforms the correction
provided by the DART increments ( but only just ).

« Adisadvantage ofthe DA increments is that they depend on observations
which are spatially inhomogeneous and can be sparse . Especially in data-
limited regions, the analysis increment will unlikely represent model-error.

* On the other hand, nudging increments will benefit from the balance and
conservation properties mherent in reanalysis as well as the spatial
homogeneity of a gridded product. A noted disadvantage of the nudging
tendencies is that the model will adopt the same biases present in the
reanalysis .

* While the exact computational cost is system-specific, all data assimilation
systems are resource-intensive. Indeed, they are often not readily available,
which makes an online -bias correction based on nudging tendencies a
viable and flexible approach to study the impact of model bias in climate
models .
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Conclusions
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* Nudging increments and DA increments pick up the same general features of
systematic model bias, particularly in the tropics at lower model levels

« Overall, we find a positive impact of an online model -error representation
based on re-inserting DA increments and nudging on the climatological bias.

« The addition of a stochastic tendency reduced this bias and created an more
accurate representation of major modes of variability when compared to

observations.
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Machine Learning Emulation

Can this process be replaced with a Machine Learning pipeline to
create a “state-dependent” correction?
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Machine Learning Emulation @

Can this process be replaced with a Machine Learning pipeline to
create a “state-dependent” correction?

e
Model State Nudging
Variables Increments
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ML is Skillful (OFFLINE Skill)
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Results are pending in online simulation!




Conclusions
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« We find that overall, nudging increments and DA increments pick up the
same general features of systematic model bias, particularly at lower model

levels

* We find a positive impact of an online model -error representation based on
re-inserting DA increments and nudging on the climatological bias.

* The addition of a stochastic tendency reduced this bias and created an more
accurate representation of major modes of variability when compared to

observations.

ﬁ?s}" "\ NCAR

b,




	Slide Number 1
	Co-Author 
	Recent Publication:
	Background - Data Assimilation
	DA used to Identify Systematic Model Error
	Increments used to identify structural model error
	Nudging
	Two Error Learning “Pathways”
	Climatology of DA/Nudging Increments
	Model Improvements
	Improvement to Major Atm. Modes
	DA vs. Nudging Advantages / Disadvantages
	Conclusions
	Machine Learning Emulation
	Machine Learning Emulation
	ML is Skillful (OFFLINE Skill)
	ML is Skillful (OFFLINE Skill)
	Conclusions

