Climate Model Extratropical Cloud Feedback Constrained by Cloud Sources and Sinks in Cyclones

Werapitiya et al. 2024 (JCLI, in prep)

Geethma Werapitiya¹, Daniel McCoy¹, Greg Elsaesser^{2,3}, Andrew Gettelman⁴, Trude Eidhammer⁴, Ci Song¹, Travis Aerenson¹ ¹University of Wyoming, ²Columbia University, ³NASA-GISS, ⁴NCAR, ⁵Colorado State University

Motivation

Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M., Ceppi, P., et al. (2020). Causes of higher climate sensitivity in CMIP6 models. *Geophysical Research Letters*, n/a(n/a). <u>https://doi.org/10.1029/2019GL085782</u>

CMIP6 GCMs had

(a)

 $\mathbf{0}$

What controls extratropical cyclones?

• Warm conveyor belt moisture convergence (WCB) is a good predictor of rain rate in observations where

WCB = $WS_{10m} \times WVP \times const$

(quantities are cyclone-mean, e.g. within 2000km of cyclone center)

Field, P. R., & Wood, R. (2007). Precipitation and Cloud Structure in Midlatitude Cyclones. *Journal of Climate, 20*(2), 233–254. <u>https://doi.org/10.1175/J</u> <u>CLI3998.1</u>

Moisture convergence driven cloud feedback

 GCM simulate increasing extratropical cloudiness in response to enhanced moisture flux.

Cyclone-mean LWP

Why a perturbed parameter ensemble (PPE)?

Perturbed parameter ensemble (PPE)

• Imagine a model with a single parameterization:

$$\dot{q_c} = a \cdot q_c^b \cdot N^c$$

An unobservable (e.g. aerosol forcing)

CAM6 Perturbed Physics Ensemble (PPE)

- CAM6 The sixth Community Atmosphere Model
- 45 parameters
 - Cloud Microphysics(11), Turbulence(11), Aerosols(9), Deep Convection(12)
- 262 parameter sets for simulations, selected using Latin Hypercube Sampling
- With fixed SST and ice
- Development was led by Trude Eidhammer, Andrew Gettelman at NCAR and Daniel McCoy, Ci Song at UWyo.

Eidhammer, T., A. Gettelman, K. Thayer-Calder, D. Watson-Parris, G. Elsaesser, H. Morrison, M. van Lier-Walqui, C. Song, and D. McCoy. "An Extensible Perturbed Parameter Ensemble (PPE) for the Community Atmosphere Model Version 6." *EGUsphere* 2024 (January 15, 2024): 1–27. <u>https://doi.org/10.5194/egusphere-2023-</u>

Observations

- Multi-Sensor Advanced Climatology of Liquid Water Path (MAC-LWP) – microwave radiometer based measurements
 - Variables: Daily Average Cloud Liquid Water Path, Daily Average Total Column Water Vapor, Daily Average 10-m Surface Wind Speed
- Integrated Multi-satellitE Retrievals for GPM (IMERG) Final V07 Daily product – microwave product
 - Variables: Daily accumulated Merged microwave-only precipitation estimate.
- The second Modern-Era Retrospective analysis for Research and Applications reanalysis (MERRA-2)
 - Atmospheric state

Elsaesser, G. S., Christopher W. O'Dell, Matthew D. Lebsock, Ralf Bennartz, Thomas J. Greenwald, and Frank J. Wentz. "The Multi-Sensor Advanced Climatology of Liquid Water Path (MAC-LWP)." *Journal of Climate* 0, no. 0 (2017): null. https://doi.org/10.1175/jcli-d-16-0902.1.

Find extratropical cyclones

- Cyclone composites over oceans in the region 50°S-70°S
- cyclone centers using SLP
- Each composite is 4000km across

More Clouds (LWP) with more Warm Conveyor Belt Moisture Convergence (WCB)

Observations: black dashed line CAM6 default model: blue dashed lines CAM6 PPE members: colored solid lines colored by the \triangle CRE values

- Clausius-Clapeyron drives enhanced moisture convergence to ECs as the climate warms.
- More extratropical cloudiness in ECs in response to warming.

Extratropical cloud feedback

Zonal mean plots of response to warming

Colored lines are for PPE members constrained by observations.

In response to warming, subtropics dries and extratropics moistens.

Radiative feedback

• Change in cloud properties scaled by albedo susceptibility is linear in cloud feedback.

Moisture Removal and Radiative Efficiency

Strong sensitivities of LWP to WCB in EC are compensated by weak sensitivities of albedo to LWP.

CAM6 is Constrained by Observations

wgeethma@uwyo.edu

Take Home!

- Clausius-Clapeyron drives enhanced moisture convergence to EC as the climate warms.
- More extratropical cloudiness in EC in response to warming.
- Response of LWP to warming-driven moisture convergence (Δ LWP/ Δ P-E) is constrained in the CAM6 PPE.
- Observations suggest a weaker $\Delta LWP/\Delta P-E$.
- CAM6 PPE SW_{CF} is constrained by observations.
- More positive Southern ocean SW_{CF} suggested by observations.
- CESM2's high ECS appears to be consistent with observational constraints on the Southern Ocean.

Acknowledgement: NASA-PMMST Grant #80NSSC22K0599

THANK YOU!