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ensemble mean shows little longwave CRF response to the

rising surface temperatures.
In the shortwave cloudy component, the sign of response

differs between tropical and high latitude regions. Over the

Tropics, there is a reduction in sunlight reflected by clouds
on warming while over the extratropics, especially over

northern hemisphere landmasses, we see an increase. Such

an effect was observed in the GISS model by Tselioudis
et al. (1998), as well as observational studies—Dai et al.

(1997) shows an observed increase in cloud cover over the
former USSR while Hahn et al. (1996) shows decreases in

China, South America and Africa as observed in Fig. 2.

In higher latitudes, the increase in cloud cover is gen-
erally attributed to increases in vertical cloud extent and

cloud water with increased relative humidity. On the other

hand, in warmer latitudes, an increase in precipitation
efficiency (Lau and Wu 2003) and cloud-top entrainment

act to decrease the cloud water content and cloud extent on

warming.
Although no information on cloud height is output in the

regional data, the lack of any compensating increase in

outgoing longwave radiation suggests a decrease in low-
level tropical cloud. Such an effect was suggested for re-

gions of subsistence by Bajuk and Leovy (1998), but Bony

and Dufresne (2005) highlighted the inconsistency among

climate models in the sensitivity of marine boundary layer

cloud to warming.
The shortwave clear-sky component is positive over

landmasses due to the retreat of snow and ice covered areas

on warming, increasing the net shortwave radiation ab-
sorbed at the surface. This effect is most dominant over the

Northern Hemisphere landmasses.

3.2 EOF analysis

The process of taking the matrix of regional radiative re-

sponses for all ensemble members and performing an EOF
analysis is explained in Sect. 2.2. The spacing of eigen-

values indicates whether modes may be considered inde-

pendent and non-degenerate (see Eq. 1). Figure 3 shows
the two leading modes are well separated and non-degen-

erate. Interpreting degenerate modes is more troublesome,

as sampling noise can cause various linear combinations to
be extracted (see North et al. 1982). Thus for the purposes

of this work, we concentrate on the two dominant modes.

To determine the proportion of total variance in global
feedback parameter described by these two modes, we use

Eq. 4. The first mode accounts for just over sixty percent of

the variance in global feedback parameter, while the sec-
ond accounts for twenty percent. Throughout the rest of the
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Fig. 2 A plot of the ensemble-
mean feedback response to
warming on an equal area map
shown for each area used in the
analysis. Blue represents
negative feedbacks, where net
downward radiation at the top of
atmosphere decreases as the
surface temperature rises.
Positive feedbacks are shown in
red, where the net downward
flux increases with rising
temperatures. Non-overlapping
regions (primarily ocean) are
linearly calculated over each
latitude band
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How to constrain climate projections with observational 
data given the huge dimension of parameter space?

 parameters∼ 𝒪(1000)



Do We need to Know the Value of all Climate Model 
Parameters?

 parameters∼ 𝒪(1000)



Simple Questions Lead To Simple Models?

model, reflecting the increased complexity and lack of
symmetry of this system, but are nevertheless all amenable
to analytic evaluation and physical interpretation. They
include limits in which reactions equilibrate, turn off,
saturate, or never saturate, as well as several singular
limits. They also include more subtle limits in which
reaction rates become small while their downstream effects
become large in a balanced way. The FIM eigenvalues
reveal that the simplifications have removed the irrelevant
parameters while retaining the predictive flexibility of the
original model. Indeed, the lack of small eigenvalues
indicates that all of the parameters can be connected to
some aspect of the system’s emergent behavior, as we
discuss below.
As a final example, we consider a Boltzmann distribu-

tion of a one-dimensional (for simplicity) chain of Ising
spins. This model typically is written as a Hamiltonian
(H ¼ −J

P
μsμsμþ1 − h

P
μsμ) with two parameters (J and

h). These parameters are the relevant combinations under a
RG coarsening and therefore describe the emergent phys-
ics. However, they are a poor model of the microscopic
correlations among the spins sμ. We therefore generalize
this model as H ¼ −

P
μJμsμsμþ1 to reflect a more flexible

microscopic formulation.
The manifold boundaries of this model are given by

Jμ → #∞ (see Supplemental Material [41]). These limits
are again both physically intuitive and simple to evaluate,
corresponding to the scenario of either perfectively corre-
lated or anticorrelated nearest neighbor spins (ferromag-
netic or antiferromagnetic order, respectively). These limits
remove a spin degree of freedom from the model and
couple next-nearest neighbors with an effective interaction.
Removing all of the odd spins corresponds to predictions

on long length scales and can be accurately described
by the effective Hamiltonian of the form Heff ¼
−
PN=2

μ ~J2μs2μs2μþ2. This model corresponds to a hyper-
corner of the original manifold in which half of the
coupling constants become infinite, and is equivalent to
a single iteration of a block-spin renormalization pro-
cedure. This basic result generalizes to arbitrary dimension
(allowing us to recover the typical criticality described by
RG in higher dimensions). Similar results also hold for
alternate microscopic versions of the model. For example, a
microscopic Hamiltonian given by H ¼ −

P
μαJαsμsμþα

yields simplifying limits that remove the high-frequency
spin configurations as in the momentum-space RG. Unlike
RG, however, the MBAM is not limited to systems with
self-similar behavior.
The connection to the renormalization group provides a

motivation for interpreting reduced models generally. RG
makes systematic the removal of short distance degrees of
freedom within the context of field theories and solidifies
the concept of effective field theories. Similarly, the
MBAM is a technique for constructing effective models
in more general contexts. Returning to the EGFR model,
we see that the simplified model treats C3G as directly
influencing Erk concentration. This interaction is not
direct in the reductionist sense, but is mediated by a
chain of reactions (C3G → Rap1 → BRaf → Mek → Erk)
described by eight parameters. However, the simplified
model has a single “renormalized” parameter describing the
effective interaction. We can trace the macroscopic param-
eter ϕ back to its microscopic origin through the limiting
approximations

ϕ ¼
ðkRap1ToBRafÞðKmdBRafÞðkpBRafÞðKmdMekÞ

ðkdBRafÞðKmRap1ToBRafÞðkdMekÞ
: ð1Þ

Notice that ϕ condenses the many microscopic parameters
into a single relevant, nonlinear combination. Each micro-
scopic parameter can be important to the system’s emergent
behavior, but only through its effect on ϕ. The simplified
model, therefore, contains real biological insights and
Eq. (1) serves as the basis for understanding and predicting
the functional effects of microscopic perturbations, such as
mutations or drug therapies, on the system’s macroscopic
behavior.
The MBAM method is different from other reduction

techniques in its aim to remove parameters rather than
physical degrees of freedom. These are not unrelated since
parameters generally codify the relationship among physi-
cal degrees of freedom. There are three advantages to this
abstraction. First, it allows simplification of relationships
among physical degrees of freedom even if they cannot
themselves be removed, e.g., removing edges from the
network in Fig. 3. Second, it allows the use of information
geometry as a unified language for exploring model
families regardless of the actual physics. Finally,

FIG. 3 (color online). Original and reduced EGFR models. The
interactions of the EGFR signaling pathway [32,33] are sum-
marized in the leftmost network. Solid circles are chemical
species for which the experimental data were available to fit.
Manifold boundaries reduce the model to a form (right) capable
of fitting the same data and making the same predictions as in
Refs. [32,33]. The FIM eigenvalues (center) indicate that the
simplified model has removed the irrelevant parameters identified
as eigenvalues less than 1 (dotted line) while retaining the original
model’s predictive power.
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Sloppiness: Importance to Precdictions Decay 
Exponentially

model, reflecting the increased complexity and lack of
symmetry of this system, but are nevertheless all amenable
to analytic evaluation and physical interpretation. They
include limits in which reactions equilibrate, turn off,
saturate, or never saturate, as well as several singular
limits. They also include more subtle limits in which
reaction rates become small while their downstream effects
become large in a balanced way. The FIM eigenvalues
reveal that the simplifications have removed the irrelevant
parameters while retaining the predictive flexibility of the
original model. Indeed, the lack of small eigenvalues
indicates that all of the parameters can be connected to
some aspect of the system’s emergent behavior, as we
discuss below.
As a final example, we consider a Boltzmann distribu-

tion of a one-dimensional (for simplicity) chain of Ising
spins. This model typically is written as a Hamiltonian
(H ¼ −J

P
μsμsμþ1 − h

P
μsμ) with two parameters (J and

h). These parameters are the relevant combinations under a
RG coarsening and therefore describe the emergent phys-
ics. However, they are a poor model of the microscopic
correlations among the spins sμ. We therefore generalize
this model as H ¼ −

P
μJμsμsμþ1 to reflect a more flexible

microscopic formulation.
The manifold boundaries of this model are given by

Jμ → #∞ (see Supplemental Material [41]). These limits
are again both physically intuitive and simple to evaluate,
corresponding to the scenario of either perfectively corre-
lated or anticorrelated nearest neighbor spins (ferromag-
netic or antiferromagnetic order, respectively). These limits
remove a spin degree of freedom from the model and
couple next-nearest neighbors with an effective interaction.
Removing all of the odd spins corresponds to predictions

on long length scales and can be accurately described
by the effective Hamiltonian of the form Heff ¼
−
PN=2

μ ~J2μs2μs2μþ2. This model corresponds to a hyper-
corner of the original manifold in which half of the
coupling constants become infinite, and is equivalent to
a single iteration of a block-spin renormalization pro-
cedure. This basic result generalizes to arbitrary dimension
(allowing us to recover the typical criticality described by
RG in higher dimensions). Similar results also hold for
alternate microscopic versions of the model. For example, a
microscopic Hamiltonian given by H ¼ −

P
μαJαsμsμþα

yields simplifying limits that remove the high-frequency
spin configurations as in the momentum-space RG. Unlike
RG, however, the MBAM is not limited to systems with
self-similar behavior.
The connection to the renormalization group provides a

motivation for interpreting reduced models generally. RG
makes systematic the removal of short distance degrees of
freedom within the context of field theories and solidifies
the concept of effective field theories. Similarly, the
MBAM is a technique for constructing effective models
in more general contexts. Returning to the EGFR model,
we see that the simplified model treats C3G as directly
influencing Erk concentration. This interaction is not
direct in the reductionist sense, but is mediated by a
chain of reactions (C3G → Rap1 → BRaf → Mek → Erk)
described by eight parameters. However, the simplified
model has a single “renormalized” parameter describing the
effective interaction. We can trace the macroscopic param-
eter ϕ back to its microscopic origin through the limiting
approximations

ϕ ¼
ðkRap1ToBRafÞðKmdBRafÞðkpBRafÞðKmdMekÞ

ðkdBRafÞðKmRap1ToBRafÞðkdMekÞ
: ð1Þ

Notice that ϕ condenses the many microscopic parameters
into a single relevant, nonlinear combination. Each micro-
scopic parameter can be important to the system’s emergent
behavior, but only through its effect on ϕ. The simplified
model, therefore, contains real biological insights and
Eq. (1) serves as the basis for understanding and predicting
the functional effects of microscopic perturbations, such as
mutations or drug therapies, on the system’s macroscopic
behavior.
The MBAM method is different from other reduction

techniques in its aim to remove parameters rather than
physical degrees of freedom. These are not unrelated since
parameters generally codify the relationship among physi-
cal degrees of freedom. There are three advantages to this
abstraction. First, it allows simplification of relationships
among physical degrees of freedom even if they cannot
themselves be removed, e.g., removing edges from the
network in Fig. 3. Second, it allows the use of information
geometry as a unified language for exploring model
families regardless of the actual physics. Finally,

FIG. 3 (color online). Original and reduced EGFR models. The
interactions of the EGFR signaling pathway [32,33] are sum-
marized in the leftmost network. Solid circles are chemical
species for which the experimental data were available to fit.
Manifold boundaries reduce the model to a form (right) capable
of fitting the same data and making the same predictions as in
Refs. [32,33]. The FIM eigenvalues (center) indicate that the
simplified model has removed the irrelevant parameters identified
as eigenvalues less than 1 (dotted line) while retaining the original
model’s predictive power.
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Sloppyness is UniversalRep. Prog. Phys. 86 (2023) 035901 Review

Figure 3. Parameter hierarchies that span many orders of magnitude are observed in a wide variety of models. The vertical axis shows
eigenvalues of the Fisher information matrix, scaled by the largest eigenvalue. Cell signaling data from [2], radioactive decay and neural
network are taken from [53], quantum wavefunction are taken from [54], diffusion model and Ising model are taken from [38], meat
oxidation is from [55], CMB data from [41], accelerator model taken from [56], van der Pol oscillator taken from [57], circadian clock
model from [7], SW interatomic potential model from [58], power systems from [59], gravitational model from [60], transmission loss in an
underwater environment from [61], and finally H2IO2 combustion model from [62].

the particular parameterization chosen. If we re-scale some
parameters, such as by changing their units, then the FIM and
hence the spectrum of eigenvalues will change8.

We can avoid this by measuring the global geometry of the
model manifold [63, 64] using geodesics along the thick and
thin directions. Let θ(τ) be a path in parameter space, which
then is mapped by the model onto a path on the model mani-
fold. The length of this path, as defined by the Fisher inform-
ation metric:

L=

ˆ √
ds2 =

ˆ 1

0
dτ

√∑

µν

gµν(θ(τ))
∂θµ

∂τ

∂θν

∂τ
, (6)

is independent of the way we define the coordinate system L
on the model manifold. A geodesic is a curve connecting two
points which minimizes the length between them. For models
withGaussian noise x= y+N (0,σ2) as in equation (4) above,
this geodesic distance agrees with the Euclidean path length in
the prediction space, measured by walking along Y .

We measure the widths of the model manifold by starting
from an initial point (say, the best fit to the experimental data)
and launching geodesics along one of the eigendirections in
parameter space, shooting both ways until it hits the bound-
aries. Figure 4 shows the resulting geodesic widths across the
model manifold for a number of different models. As advert-
ised, they too show a roughly geometric progression over
many orders of magnitude, with the stiff parameter directions

8 In fact, the process of diagonalizing the FIM to find its eigenvectors amounts
to finding a basis for parameter space, near a point, in which the matrix
becomes 1.

yielding the widest directions and with the many sloppy direc-
tions corresponding to incredibly thin directions on the model
manifold. We will call this emergent hierarchical structure of
the model manifold a hyperribbon, after the idea that a ribbon
is much longer than it is wide, and much wider than it is thick.

We call a model sloppy, and the model manifold a hyperrib-
bon, if the parameter-space eigenvalues and prediction-space
widths are hierarchical: roughly equally spaced in log, span-
ning several decades. A sloppy model will have an effective
low-dimensional description if many of its widths are small
compared to the precision of the predictions demanded. This
need not be the case—the ΛCDM model of the Universe cos-
mic microwave background radiation (column 3 in figure 3
and column 6 in figure 4) is sloppy (especially consider-
ing how few parameters it has) because the experiments are
so precise that all parameters are well determined from the
data. An impressive use of optimal experimental design [65]
has shown that the individual parameters in our cell signal-
ing network [1, 2] (column 1 in figure 3) could in principle
be determined, albeit with a rather large number of experi-
ments [66]. Alternatively, one could measure all the individual
parameters separately in a model whose collective behavior
is sloppy [67], but the resulting collective behavior will usu-
ally be predictable only if every one of the parameters is well
specified [68]. Finally, most scientific models of complex sys-
tems like biological signaling are likely approximations to
the microscopic behavior (Michaelis–Menten equations repla-
cing enzyme reaction kinetics), and the resulting paramet-
ers are ‘renormalized’ to incorporate coarse-grained ignored
complexity. Systematically designing experiments to meas-
ure these coarse-grained model parameters may just uncover
flaws in the microscopic description that are irrelevant to the

6
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Global and Local Sloppiness
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Figure 3. Parameter hierarchies that span many orders of magnitude are observed in a wide variety of models. The vertical axis shows
eigenvalues of the Fisher information matrix, scaled by the largest eigenvalue. Cell signaling data from [2], radioactive decay and neural
network are taken from [53], quantum wavefunction are taken from [54], diffusion model and Ising model are taken from [38], meat
oxidation is from [55], CMB data from [41], accelerator model taken from [56], van der Pol oscillator taken from [57], circadian clock
model from [7], SW interatomic potential model from [58], power systems from [59], gravitational model from [60], transmission loss in an
underwater environment from [61], and finally H2IO2 combustion model from [62].
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low-dimensional description if many of its widths are small
compared to the precision of the predictions demanded. This
need not be the case—the ΛCDM model of the Universe cos-
mic microwave background radiation (column 3 in figure 3
and column 6 in figure 4) is sloppy (especially consider-
ing how few parameters it has) because the experiments are
so precise that all parameters are well determined from the
data. An impressive use of optimal experimental design [65]
has shown that the individual parameters in our cell signal-
ing network [1, 2] (column 1 in figure 3) could in principle
be determined, albeit with a rather large number of experi-
ments [66]. Alternatively, one could measure all the individual
parameters separately in a model whose collective behavior
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ally be predictable only if every one of the parameters is well
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the microscopic behavior (Michaelis–Menten equations repla-
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Figure 4. Manifold widths for many disparate, nonlinear models (rescaled by the largest width for each model) illustrating the hyperribbon
structure that characterizes model manifolds. Note the enormous range in vertical axis. For probabilistic models, imaginary lengths
(i.e. negative squared distances) are reflected by dashed lines (section 7). Exponential curves, reaction velocities, and epidemiology model
taken from [30], biased coin, Gaussians, CMB, Ising Model and Neural Network taken from [41]. The first three models here, and models
1–3 and 7–17 of figure 3, are nonlinear least-squares models, hence subject to the rigorous hyperribbon bounds of section 3. The other
probabilistic models show the same hyperribbon hierarchy; methods for visualizing their model manifolds are discussed in section 7.
Section 7.3 provides a different hyperribbon embedding that yields a finite-dimensional embedding for all of the latter except CMB (zero
widths beyond the first few).

emergent behavior. We shall systematically study these useful
coarse-grained models in section 4.1.

3. Hyperribbon bounds for nonlinear least-squares
models

A fundamental feature of sloppy models is the hyperribbon
structure of the model manifold. As discussed in the previous
section, the model manifold has a hierarchy of widths that fol-
lows a geometric spread—roughly even in log. Where does
this ubiquitous hierarchy of sensitivity come from? In this
section we shall review rigorous bounds on the manifold of
possible predictions for the special case of a multiparameter
nonlinear least-squares model [30]. The proof relies on the
smoothness of the predictions as the experimental controls
(time, experimental conditions, etc) are varied, and explains
the hierarchy of widths of the model manifold (as in figure 4).
The smoothness and analyticity of the functions used in model
construction directly controls the range of possible predic-
tions allowed by the model. By quantifying the former we can
understand the hyperribbon nature of the latter.

Before we start, we should emphasize how the sloppiness
we study is distinct from other well-studied mechanisms that
canmake systems ill-posed. First, in systems biology and other
fields, many have studied structural identifiability—when cer-
tain parameters cannot be gleaned from a given set of experi-
ments, e.g. when some perhaps nonlinear transformation of the
parameters makes for exactly the same predictions [23]. These
would give eigenvalues of themetric exactly equal to zero. Our

work instead focuses on what one would call practical identi-
fiability [23], where some parameter combinations are almost
interchangeable, leading to the small, sloppy eigenvalues in
parameter space. Second, while the models we study often
have a variety of time or length scales, the observed hierarch-
ies are not primarily due to a separation of scales [69]. Systems
with a separation of scales (fast-slow dynamical systems, sin-
gular perturbation theory, boundary layer theory) have been
thoroughly studied in the literature, and certainly will gener-
ate a large range of eigenvalues, but do not explain why eigen-
values span many decades uniformly. To test that separation
of scales is not required for sloppiness, one need simply take
a classically sloppy model such as a complex network in sys-
tems biology [1, 2] and set all the rate constants to one. The
cost Hessian remains sloppy, with eigenvalues roughly uni-
formly spread over many decades. We also note that models
with diverging time scales will typically violate the smooth-
ness assumptions we need to derive our bounds. That is, a sep-
aration of time scales adds to the hierarchical sloppiness we
derive in this section.

3.1. Taylor series

We can understand sloppiness, and give bounds for the widths
of the model manifold that explain the observed hierarchies,
through approximation theory. Specifically, we study polyno-
mial approximations of model predictions. For simplicity, here
we consider models whose predictions are a one-dimensional
function yθ(t) over the interval t ∈ (−T,T), such as in figure 1
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Understand Model Variability by Dimensional Reduction

 parameters∼ 𝒪(1000)



Dimensionality Reduction for Climate Predictions

• Explore Behavior manifold & Fisher Metric  

ensemble mean shows little longwave CRF response to the

rising surface temperatures.
In the shortwave cloudy component, the sign of response

differs between tropical and high latitude regions. Over the

Tropics, there is a reduction in sunlight reflected by clouds
on warming while over the extratropics, especially over

northern hemisphere landmasses, we see an increase. Such

an effect was observed in the GISS model by Tselioudis
et al. (1998), as well as observational studies—Dai et al.

(1997) shows an observed increase in cloud cover over the
former USSR while Hahn et al. (1996) shows decreases in

China, South America and Africa as observed in Fig. 2.

In higher latitudes, the increase in cloud cover is gen-
erally attributed to increases in vertical cloud extent and

cloud water with increased relative humidity. On the other

hand, in warmer latitudes, an increase in precipitation
efficiency (Lau and Wu 2003) and cloud-top entrainment

act to decrease the cloud water content and cloud extent on

warming.
Although no information on cloud height is output in the

regional data, the lack of any compensating increase in

outgoing longwave radiation suggests a decrease in low-
level tropical cloud. Such an effect was suggested for re-

gions of subsistence by Bajuk and Leovy (1998), but Bony

and Dufresne (2005) highlighted the inconsistency among

climate models in the sensitivity of marine boundary layer

cloud to warming.
The shortwave clear-sky component is positive over

landmasses due to the retreat of snow and ice covered areas

on warming, increasing the net shortwave radiation ab-
sorbed at the surface. This effect is most dominant over the

Northern Hemisphere landmasses.

3.2 EOF analysis

The process of taking the matrix of regional radiative re-

sponses for all ensemble members and performing an EOF
analysis is explained in Sect. 2.2. The spacing of eigen-

values indicates whether modes may be considered inde-

pendent and non-degenerate (see Eq. 1). Figure 3 shows
the two leading modes are well separated and non-degen-

erate. Interpreting degenerate modes is more troublesome,

as sampling noise can cause various linear combinations to
be extracted (see North et al. 1982). Thus for the purposes

of this work, we concentrate on the two dominant modes.

To determine the proportion of total variance in global
feedback parameter described by these two modes, we use

Eq. 4. The first mode accounts for just over sixty percent of

the variance in global feedback parameter, while the sec-
ond accounts for twenty percent. Throughout the rest of the
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Fig. 2 A plot of the ensemble-
mean feedback response to
warming on an equal area map
shown for each area used in the
analysis. Blue represents
negative feedbacks, where net
downward radiation at the top of
atmosphere decreases as the
surface temperature rises.
Positive feedbacks are shown in
red, where the net downward
flux increases with rising
temperatures. Non-overlapping
regions (primarily ocean) are
linearly calculated over each
latitude band
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Benchmark low resolution model
• Most fields show similar latitudinal patterns between LR and HR 

PPE, but notable differences remain (e.g., LWP distribution and 
IWP magnitude). 

Benchmarking a Low-Resolution CAM6 Perturbed Parameter Ensemble
Benjamin Moose1, Angeline Pendergrass1, Itay Griniasty2, Joshua Fan3

Cornell University Department of 1Earth and Atmospheric Sciences, 2Physics, 3Computer Science 

Background Benchmarking for Select Output Variables

• Applied two sets of kernels (Pendergrass, Zelinka) to low-resolution 
model PD and SST4K fields to calculate total feedback and cloud 
feedback components

Benchmarking Ensemble Climate Feedbacks Conclusions and Future Work

Background

Fig. 5: Global, temporal mean feedback parameters within ensembles. Points 
represent members, color differentiates CMIP6, LR, and HR ensembles and 

indicates kernels used for LR PPE feedback calculations. Black points 
represent controls / CESM2 (for CMIP6), red point and bars indicate mean 

and ± 1SD. Quasi-recreation of Fig. 2 from Duffy et al., 2024.

Fig. 6: Scatterplots of low-resolution (Zelinka and 
Pendergrass kernels) and high-resolution PPE 

feedback parameters (longwave cloud, shortwave 
cloud, total).

• Applied two sets of kernels to LR model PD and 
SST4K fields to calculate feedbacks (Pendergrass, 2019; 
Zelinka, 2021)

• Zelinka kernels represent cloud feedback 
based on cloud fraction change from COSP-
ISCCP histogram (Zelinka, 2012; Pendergrass et al., 2017)

• Pendergrass kernels explicitly calculate 
other feedbacks, represent cloud feedback 
as a residual term (Pendergrass, 2019)

• For LW and SW cloud feedbacks:
• Ensemble standard deviations larger in LR 

PPE than HR PPE
• Ensemble mean LR-HR differences similar in 

magnitude to HR-CMIP6 mean differences

Models and Configurations

• Applied two sets of kernels 
(Pendergrass, Zelinka) to low-
resolution model PD and SST4K 
fields to calculate total feedback 
and cloud feedback components

r = 0.71 r = 0.75

r = 0.65 r = 0.68

r = 0.28

• 263-member CAM6 PPE with 45 perturbed parameters (Eidhammer et al., 2024).

• Originally run at 0.9°x1.1°/1.25° (Higher-Resolution, HR), parameter ranges 
selected via expert judgment (Eidhammer et al., 2024; Duffy et al., 2024).

• Rerun at 10°x15° (Low-Resolution, LR) with same parameter perturbations 
for investigations into sloppiness, 3-year run length

PD Run
F2000climo compset with 

climatological annual sea surface 
temperatures (Duffy et al., 2024, p. 214)

SST4K Run
Identical to PD run except for 4K 

increase in SST, used for feedback 
calculations (Duffy et al., 2024)

SST4K and PD runs similar in temporal 
+ ensemble + longitudinal mean

Parameter sensitivity for select parameters similar between 
LR and HR ensembles 

• However, unclear that parameter ranges intended for HR 
PPE match optimal ranges for LR PPE

• Limitation: small subset of variables selected for analysis 
(as in Eidhammer et al., 2024)

Comparison of 3-year mean LR PPE output to HR PPE output – recreation of figures from Eidhammer et al. (2024) with additional LR PPE data

Most fields show similar latitudinal 
patterns between LR and HR PPE, 
but notable differences remain 
(LWP distribution, IWP magnitude)

Competing reduction 
in OLR and reduction 
in net SW radiation

Little change in clear-
sky TOM shortwave, 
LR-HR differences 
likely due to changes 
in clouds

Model Sloppiness: the degree to which a model shows sensitivity to, 
primarily, a small subset of parameter combinations (Machta et al., 2013)

Model simplification efforts (Transtrum and Qiu, 2014)

Analyze model 
sloppiness
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higher-res. version

Need many cheap 
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Parameter 
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Fig. 1: Recreation of Fig. 3 from Eidhammer et al. (2024) with 
additional LR PPE data. Top six subplots show mean and standard 
deviation of select temporally and longitudinally-averaged output 
fields. Histogram shows global mean top-of-model radiative 
imbalance.

Fig. 2: Scatterplots of global and 
temporal mean LR and HR PPE 
output for all ensemble members.

Fig. 4: Decomposition of net top-of-model 
radiative imbalance into longwave and 
shortwave components for HR (filled) and LR 
(hatched) PD PPEs.

• Run individual parameter 
perturbations to estimate 
derivatives of model output with 
respect to single parameters

• Further investigate factors 
driving difference in TOA 
radiative imbalance between 
LR and HR simulations

The LR CAM6 PPE matches its HR counterpart relatively well in select 
parameter sensitivities and for some output variables in the temporal, 
longitudinal, and ensemble mean sense.

With both kernel methods, LR PPE cloud feedbacks fall relatively close to 
CMIP6 and HR PPE cloud feedback estimates.  
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PD and SST4K show alignment of Low Res to High Res 
Reponse to Parameter Variation

• Most fields show similar latitudinal patterns between LR and HR 
PPE, but notable differences remain (e.g., LWP distribution and 
IWP magnitude). 
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feedback components
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indicates kernels used for LR PPE feedback calculations. Black points 
represent controls / CESM2 (for CMIP6), red point and bars indicate mean 

and ± 1SD. Quasi-recreation of Fig. 2 from Duffy et al., 2024.

Fig. 6: Scatterplots of low-resolution (Zelinka and 
Pendergrass kernels) and high-resolution PPE 

feedback parameters (longwave cloud, shortwave 
cloud, total).

• Applied two sets of kernels to LR model PD and 
SST4K fields to calculate feedbacks (Pendergrass, 2019; 
Zelinka, 2021)

• Zelinka kernels represent cloud feedback 
based on cloud fraction change from COSP-
ISCCP histogram (Zelinka, 2012; Pendergrass et al., 2017)

• Pendergrass kernels explicitly calculate 
other feedbacks, represent cloud feedback 
as a residual term (Pendergrass, 2019)

• For LW and SW cloud feedbacks:
• Ensemble standard deviations larger in LR 

PPE than HR PPE
• Ensemble mean LR-HR differences similar in 

magnitude to HR-CMIP6 mean differences
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resolution model PD and SST4K 
fields to calculate total feedback 
and cloud feedback components

r = 0.71 r = 0.75
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r = 0.28
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• Originally run at 0.9°x1.1°/1.25° (Higher-Resolution, HR), parameter ranges 
selected via expert judgment (Eidhammer et al., 2024; Duffy et al., 2024).

• Rerun at 10°x15° (Low-Resolution, LR) with same parameter perturbations 
for investigations into sloppiness, 3-year run length
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F2000climo compset with 

climatological annual sea surface 
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SST4K Run
Identical to PD run except for 4K 

increase in SST, used for feedback 
calculations (Duffy et al., 2024)

SST4K and PD runs similar in temporal 
+ ensemble + longitudinal mean

Parameter sensitivity for select parameters similar between 
LR and HR ensembles 

• However, unclear that parameter ranges intended for HR 
PPE match optimal ranges for LR PPE

• Limitation: small subset of variables selected for analysis 
(as in Eidhammer et al., 2024)

Comparison of 3-year mean LR PPE output to HR PPE output – recreation of figures from Eidhammer et al. (2024) with additional LR PPE data

Most fields show similar latitudinal 
patterns between LR and HR PPE, 
but notable differences remain 
(LWP distribution, IWP magnitude)

Competing reduction 
in OLR and reduction 
in net SW radiation

Little change in clear-
sky TOM shortwave, 
LR-HR differences 
likely due to changes 
in clouds

Model Sloppiness: the degree to which a model shows sensitivity to, 
primarily, a small subset of parameter combinations (Machta et al., 2013)

Model simplification efforts (Transtrum and Qiu, 2014)
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Fig. 1: Recreation of Fig. 3 from Eidhammer et al. (2024) with 
additional LR PPE data. Top six subplots show mean and standard 
deviation of select temporally and longitudinally-averaged output 
fields. Histogram shows global mean top-of-model radiative 
imbalance.

Fig. 2: Scatterplots of global and 
temporal mean LR and HR PPE 
output for all ensemble members.

Fig. 4: Decomposition of net top-of-model 
radiative imbalance into longwave and 
shortwave components for HR (filled) and LR 
(hatched) PD PPEs.

• Run individual parameter 
perturbations to estimate 
derivatives of model output with 
respect to single parameters

• Further investigate factors 
driving difference in TOA 
radiative imbalance between 
LR and HR simulations

The LR CAM6 PPE matches its HR counterpart relatively well in select 
parameter sensitivities and for some output variables in the temporal, 
longitudinal, and ensemble mean sense.

With both kernel methods, LR PPE cloud feedbacks fall relatively close to 
CMIP6 and HR PPE cloud feedback estimates.  
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cloud, total).

• Applied two sets of kernels to LR model PD and 
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Zelinka, 2021)

• Zelinka kernels represent cloud feedback 
based on cloud fraction change from COSP-
ISCCP histogram (Zelinka, 2012; Pendergrass et al., 2017)

• Pendergrass kernels explicitly calculate 
other feedbacks, represent cloud feedback 
as a residual term (Pendergrass, 2019)

• For LW and SW cloud feedbacks:
• Ensemble standard deviations larger in LR 

PPE than HR PPE
• Ensemble mean LR-HR differences similar in 

magnitude to HR-CMIP6 mean differences
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• However, unclear that parameter ranges intended for HR 
PPE match optimal ranges for LR PPE

• Limitation: small subset of variables selected for analysis 
(as in Eidhammer et al., 2024)

Comparison of 3-year mean LR PPE output to HR PPE output – recreation of figures from Eidhammer et al. (2024) with additional LR PPE data
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patterns between LR and HR PPE, 
but notable differences remain 
(LWP distribution, IWP magnitude)
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Little change in clear-
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Fig. 1: Recreation of Fig. 3 from Eidhammer et al. (2024) with 
additional LR PPE data. Top six subplots show mean and standard 
deviation of select temporally and longitudinally-averaged output 
fields. Histogram shows global mean top-of-model radiative 
imbalance.

Fig. 2: Scatterplots of global and 
temporal mean LR and HR PPE 
output for all ensemble members.

Fig. 4: Decomposition of net top-of-model 
radiative imbalance into longwave and 
shortwave components for HR (filled) and LR 
(hatched) PD PPEs.

• Run individual parameter 
perturbations to estimate 
derivatives of model output with 
respect to single parameters

• Further investigate factors 
driving difference in TOA 
radiative imbalance between 
LR and HR simulations

The LR CAM6 PPE matches its HR counterpart relatively well in select 
parameter sensitivities and for some output variables in the temporal, 
longitudinal, and ensemble mean sense.

With both kernel methods, LR PPE cloud feedbacks fall relatively close to 
CMIP6 and HR PPE cloud feedback estimates.  

References

Fig. 3: Standardized global and 
temporal mean output fields as a 

function of select (normalized) 
parameter values of ensemble 

member. Quasi-recreation of Fig. 7, 
Eidhammer et al., 2024.

Machta, B. B., Chachra, R., Transtrum, M. K., & Sethna, J. P. (2013). Parameter Space Compression Underlies Emergent Theories and Predictive Models. Science, 
342(6158), 604–607. https://doi.org/10.1126/science.1238723

Transtrum, M. K., & Qiu, P. (2014). Model Reduction by Manifold Boundaries. Physical Review Letters, 113(9), 098701. https://doi.org/10.1103/PhysRevLett.113.098701

Eidhammer, T., Gettelman, A., Thayer-Calder, K., Watson-Parris, D., Elsaesser, G., Morrison, H., van Lier-Walqui, M., Song, C., & McCoy, D. (2024). An Extensible Perturbed 
Parameter Ensemble (PPE) for the Community Atmosphere Model Version 6. EGUsphere [preprint]. https://doi.org/10.5194/egusphere-2023-2165

Duffy, M. L., Medeiros, B., Gettelman, A., & Eidhammer, T. (2024). Perturbing Parameters to Understand Cloud Contributions to Climate Change. Journal of Climate, 37(1), 
213-227. https://doi-org.proxy.library.cornell.edu/10.1175/JCLI-D-23-0250.1

Pendergrass, A. G. (2017). CAM5 Radiative Kernels [Data set]. Zenodo. https://doi.org/10.5065/D6F47MT6

Angeline G Pendergrass. (2019). apendergrass/cam5-kernels: Up to date codebase as of August 2019 (August-2019). Zenodo. https://doi.org/10.5281/zenodo.3359041

Pendergrass, A. G., Conley, A., & Vitt, F. (2017). Surface and top-of-atmosphere radiative feedback kernels for CESM-CAM5. https://doi.org/10.5194/essd-2017-108

Zelinka, M. D., Klein, S. A., & Hartmann, D. L. (2012). Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative 
Kernels. Journal of Climate, 25(11), 3715-3735. https://doi.org/10.1175/JCLI-D-11-00248.1

Mark Zelinka. (2021). mzelinka/cloud-radiative-kernels: Sep 17, 2021 Release (v1.0). Zenodo. https://doi.org/10.5281/zenodo.5514137



Low Res Captures CMIP6 Variation



Caveat - Spatial Distribution May be Off For Low Res

• Most fields show similar latitudinal patterns between LR and HR 
PPE, but notable differences remain (e.g., LWP distribution and 
IWP magnitude). 
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Pendergrass kernels) and high-resolution PPE 

feedback parameters (longwave cloud, shortwave 
cloud, total).
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Zelinka, 2021)
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based on cloud fraction change from COSP-
ISCCP histogram (Zelinka, 2012; Pendergrass et al., 2017)

• Pendergrass kernels explicitly calculate 
other feedbacks, represent cloud feedback 
as a residual term (Pendergrass, 2019)

• For LW and SW cloud feedbacks:
• Ensemble standard deviations larger in LR 

PPE than HR PPE
• Ensemble mean LR-HR differences similar in 

magnitude to HR-CMIP6 mean differences
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Parameter sensitivity for select parameters similar between 
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• However, unclear that parameter ranges intended for HR 
PPE match optimal ranges for LR PPE

• Limitation: small subset of variables selected for analysis 
(as in Eidhammer et al., 2024)

Comparison of 3-year mean LR PPE output to HR PPE output – recreation of figures from Eidhammer et al. (2024) with additional LR PPE data

Most fields show similar latitudinal 
patterns between LR and HR PPE, 
but notable differences remain 
(LWP distribution, IWP magnitude)

Competing reduction 
in OLR and reduction 
in net SW radiation

Little change in clear-
sky TOM shortwave, 
LR-HR differences 
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Model Sloppiness: the degree to which a model shows sensitivity to, 
primarily, a small subset of parameter combinations (Machta et al., 2013)

Model simplification efforts (Transtrum and Qiu, 2014)

Analyze model 
sloppiness

Benchmark PPE to 
higher-res. version

Need many cheap 
simulations to 

understand climate 
response to model 

parameters

Run low-
resolution 
Perturbed 
Parameter 

Ensemble (PPE) 

Fig. 1: Recreation of Fig. 3 from Eidhammer et al. (2024) with 
additional LR PPE data. Top six subplots show mean and standard 
deviation of select temporally and longitudinally-averaged output 
fields. Histogram shows global mean top-of-model radiative 
imbalance.

Fig. 2: Scatterplots of global and 
temporal mean LR and HR PPE 
output for all ensemble members.

Fig. 4: Decomposition of net top-of-model 
radiative imbalance into longwave and 
shortwave components for HR (filled) and LR 
(hatched) PD PPEs.

• Run individual parameter 
perturbations to estimate 
derivatives of model output with 
respect to single parameters

• Further investigate factors 
driving difference in TOA 
radiative imbalance between 
LR and HR simulations

The LR CAM6 PPE matches its HR counterpart relatively well in select 
parameter sensitivities and for some output variables in the temporal, 
longitudinal, and ensemble mean sense.

With both kernel methods, LR PPE cloud feedbacks fall relatively close to 
CMIP6 and HR PPE cloud feedback estimates.  
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• Most fields show similar latitudinal patterns between LR and HR 
PPE, but notable differences remain (e.g., LWP distribution and 
IWP magnitude). 
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Background Benchmarking for Select Output Variables

• Applied two sets of kernels (Pendergrass, Zelinka) to low-resolution 
model PD and SST4K fields to calculate total feedback and cloud 
feedback components

Benchmarking Ensemble Climate Feedbacks Conclusions and Future Work

Background

Fig. 5: Global, temporal mean feedback parameters within ensembles. Points 
represent members, color differentiates CMIP6, LR, and HR ensembles and 

indicates kernels used for LR PPE feedback calculations. Black points 
represent controls / CESM2 (for CMIP6), red point and bars indicate mean 

and ± 1SD. Quasi-recreation of Fig. 2 from Duffy et al., 2024.

Fig. 6: Scatterplots of low-resolution (Zelinka and 
Pendergrass kernels) and high-resolution PPE 

feedback parameters (longwave cloud, shortwave 
cloud, total).

• Applied two sets of kernels to LR model PD and 
SST4K fields to calculate feedbacks (Pendergrass, 2019; 
Zelinka, 2021)

• Zelinka kernels represent cloud feedback 
based on cloud fraction change from COSP-
ISCCP histogram (Zelinka, 2012; Pendergrass et al., 2017)

• Pendergrass kernels explicitly calculate 
other feedbacks, represent cloud feedback 
as a residual term (Pendergrass, 2019)

• For LW and SW cloud feedbacks:
• Ensemble standard deviations larger in LR 

PPE than HR PPE
• Ensemble mean LR-HR differences similar in 

magnitude to HR-CMIP6 mean differences

Models and Configurations

• Applied two sets of kernels 
(Pendergrass, Zelinka) to low-
resolution model PD and SST4K 
fields to calculate total feedback 
and cloud feedback components

r = 0.71 r = 0.75

r = 0.65 r = 0.68

r = 0.28

• 263-member CAM6 PPE with 45 perturbed parameters (Eidhammer et al., 2024).

• Originally run at 0.9°x1.1°/1.25° (Higher-Resolution, HR), parameter ranges 
selected via expert judgment (Eidhammer et al., 2024; Duffy et al., 2024).

• Rerun at 10°x15° (Low-Resolution, LR) with same parameter perturbations 
for investigations into sloppiness, 3-year run length

PD Run
F2000climo compset with 

climatological annual sea surface 
temperatures (Duffy et al., 2024, p. 214)

SST4K Run
Identical to PD run except for 4K 

increase in SST, used for feedback 
calculations (Duffy et al., 2024)

SST4K and PD runs similar in temporal 
+ ensemble + longitudinal mean

Parameter sensitivity for select parameters similar between 
LR and HR ensembles 

• However, unclear that parameter ranges intended for HR 
PPE match optimal ranges for LR PPE

• Limitation: small subset of variables selected for analysis 
(as in Eidhammer et al., 2024)

Comparison of 3-year mean LR PPE output to HR PPE output – recreation of figures from Eidhammer et al. (2024) with additional LR PPE data

Most fields show similar latitudinal 
patterns between LR and HR PPE, 
but notable differences remain 
(LWP distribution, IWP magnitude)

Competing reduction 
in OLR and reduction 
in net SW radiation

Little change in clear-
sky TOM shortwave, 
LR-HR differences 
likely due to changes 
in clouds

Model Sloppiness: the degree to which a model shows sensitivity to, 
primarily, a small subset of parameter combinations (Machta et al., 2013)

Model simplification efforts (Transtrum and Qiu, 2014)

Analyze model 
sloppiness

Benchmark PPE to 
higher-res. version

Need many cheap 
simulations to 

understand climate 
response to model 

parameters

Run low-
resolution 
Perturbed 
Parameter 

Ensemble (PPE) 

Fig. 1: Recreation of Fig. 3 from Eidhammer et al. (2024) with 
additional LR PPE data. Top six subplots show mean and standard 
deviation of select temporally and longitudinally-averaged output 
fields. Histogram shows global mean top-of-model radiative 
imbalance.

Fig. 2: Scatterplots of global and 
temporal mean LR and HR PPE 
output for all ensemble members.

Fig. 4: Decomposition of net top-of-model 
radiative imbalance into longwave and 
shortwave components for HR (filled) and LR 
(hatched) PD PPEs.

• Run individual parameter 
perturbations to estimate 
derivatives of model output with 
respect to single parameters

• Further investigate factors 
driving difference in TOA 
radiative imbalance between 
LR and HR simulations

The LR CAM6 PPE matches its HR counterpart relatively well in select 
parameter sensitivities and for some output variables in the temporal, 
longitudinal, and ensemble mean sense.

With both kernel methods, LR PPE cloud feedbacks fall relatively close to 
CMIP6 and HR PPE cloud feedback estimates.  
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Summary

•Climate is Sloppy

• Most fields show similar latitudinal patterns between LR and HR 
PPE, but notable differences remain (e.g., LWP distribution and 
IWP magnitude). 
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model PD and SST4K fields to calculate total feedback and cloud 
feedback components
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represent controls / CESM2 (for CMIP6), red point and bars indicate mean 
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Fig. 6: Scatterplots of low-resolution (Zelinka and 
Pendergrass kernels) and high-resolution PPE 

feedback parameters (longwave cloud, shortwave 
cloud, total).

• Applied two sets of kernels to LR model PD and 
SST4K fields to calculate feedbacks (Pendergrass, 2019; 
Zelinka, 2021)

• Zelinka kernels represent cloud feedback 
based on cloud fraction change from COSP-
ISCCP histogram (Zelinka, 2012; Pendergrass et al., 2017)

• Pendergrass kernels explicitly calculate 
other feedbacks, represent cloud feedback 
as a residual term (Pendergrass, 2019)

• For LW and SW cloud feedbacks:
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PPE than HR PPE
• Ensemble mean LR-HR differences similar in 
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• Rerun at 10°x15° (Low-Resolution, LR) with same parameter perturbations 
for investigations into sloppiness, 3-year run length
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Identical to PD run except for 4K 

increase in SST, used for feedback 
calculations (Duffy et al., 2024)

SST4K and PD runs similar in temporal 
+ ensemble + longitudinal mean

Parameter sensitivity for select parameters similar between 
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• However, unclear that parameter ranges intended for HR 
PPE match optimal ranges for LR PPE

• Limitation: small subset of variables selected for analysis 
(as in Eidhammer et al., 2024)

Comparison of 3-year mean LR PPE output to HR PPE output – recreation of figures from Eidhammer et al. (2024) with additional LR PPE data

Most fields show similar latitudinal 
patterns between LR and HR PPE, 
but notable differences remain 
(LWP distribution, IWP magnitude)

Competing reduction 
in OLR and reduction 
in net SW radiation
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sky TOM shortwave, 
LR-HR differences 
likely due to changes 
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Model simplification efforts (Transtrum and Qiu, 2014)
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Fig. 1: Recreation of Fig. 3 from Eidhammer et al. (2024) with 
additional LR PPE data. Top six subplots show mean and standard 
deviation of select temporally and longitudinally-averaged output 
fields. Histogram shows global mean top-of-model radiative 
imbalance.

Fig. 2: Scatterplots of global and 
temporal mean LR and HR PPE 
output for all ensemble members.

Fig. 4: Decomposition of net top-of-model 
radiative imbalance into longwave and 
shortwave components for HR (filled) and LR 
(hatched) PD PPEs.

• Run individual parameter 
perturbations to estimate 
derivatives of model output with 
respect to single parameters

• Further investigate factors 
driving difference in TOA 
radiative imbalance between 
LR and HR simulations

The LR CAM6 PPE matches its HR counterpart relatively well in select 
parameter sensitivities and for some output variables in the temporal, 
longitudinal, and ensemble mean sense.

With both kernel methods, LR PPE cloud feedbacks fall relatively close to 
CMIP6 and HR PPE cloud feedback estimates.  
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•Ultra Low Resolution CESM is adequate 
for exploring global behaviors 



Looking ahead:

• Find low dimensional representation 
by identifying stiff directions in parameter space 
 (those that best explain variation) 

• Explore climate response using low dimensional 
representation

• Slab ocean  
• Interpret physics of stiff directions 
• Analyze robustness of predictions 

ensemble mean shows little longwave CRF response to the

rising surface temperatures.
In the shortwave cloudy component, the sign of response

differs between tropical and high latitude regions. Over the

Tropics, there is a reduction in sunlight reflected by clouds
on warming while over the extratropics, especially over

northern hemisphere landmasses, we see an increase. Such

an effect was observed in the GISS model by Tselioudis
et al. (1998), as well as observational studies—Dai et al.

(1997) shows an observed increase in cloud cover over the
former USSR while Hahn et al. (1996) shows decreases in

China, South America and Africa as observed in Fig. 2.

In higher latitudes, the increase in cloud cover is gen-
erally attributed to increases in vertical cloud extent and

cloud water with increased relative humidity. On the other

hand, in warmer latitudes, an increase in precipitation
efficiency (Lau and Wu 2003) and cloud-top entrainment

act to decrease the cloud water content and cloud extent on

warming.
Although no information on cloud height is output in the

regional data, the lack of any compensating increase in

outgoing longwave radiation suggests a decrease in low-
level tropical cloud. Such an effect was suggested for re-

gions of subsistence by Bajuk and Leovy (1998), but Bony

and Dufresne (2005) highlighted the inconsistency among

climate models in the sensitivity of marine boundary layer

cloud to warming.
The shortwave clear-sky component is positive over

landmasses due to the retreat of snow and ice covered areas

on warming, increasing the net shortwave radiation ab-
sorbed at the surface. This effect is most dominant over the

Northern Hemisphere landmasses.

3.2 EOF analysis

The process of taking the matrix of regional radiative re-

sponses for all ensemble members and performing an EOF
analysis is explained in Sect. 2.2. The spacing of eigen-

values indicates whether modes may be considered inde-

pendent and non-degenerate (see Eq. 1). Figure 3 shows
the two leading modes are well separated and non-degen-

erate. Interpreting degenerate modes is more troublesome,

as sampling noise can cause various linear combinations to
be extracted (see North et al. 1982). Thus for the purposes

of this work, we concentrate on the two dominant modes.

To determine the proportion of total variance in global
feedback parameter described by these two modes, we use

Eq. 4. The first mode accounts for just over sixty percent of

the variance in global feedback parameter, while the sec-
ond accounts for twenty percent. Throughout the rest of the

−5 0 5

d(LWcld)/dT d(LWcs)/dT

d(SWcld)/dT

Net Surface radiative response to warming (Wm
−2

K
−1

)

−ve feedback (cooling)                           +ve feedback (warming)

d(SWcs)/dT

Fig. 2 A plot of the ensemble-
mean feedback response to
warming on an equal area map
shown for each area used in the
analysis. Blue represents
negative feedbacks, where net
downward radiation at the top of
atmosphere decreases as the
surface temperature rises.
Positive feedbacks are shown in
red, where the net downward
flux increases with rising
temperatures. Non-overlapping
regions (primarily ocean) are
linearly calculated over each
latitude band
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