Characterizing Carbon Sink Responses to Decarbonization across Model Structures

Greta Shum¹, James Yoon¹, Olivia Truax^{1,2}, Claire Zarakas¹, Dargan Frierson¹, Charlie Koven³, and Abby Swann^{1,4}

¹ Atmospheric Sciences Department, University of Washington, Seattle, WA
² School of Earth and Environment, University of Canterbury, Christchurch, NZ
³ Lawrence Berkeley National Lab, Berkely, CA
⁴ Biology Department, University of Washington, Seattle, WA

Budget Imbalance B_{IM}

The global carbon cycle

↑ Carbon cycling GtC per year

↓ CDR not included in Euro

The global carbon cycle

Structure of FaIR (Simple Climate Model)

Structure of FaIR (Simple Climate Model)

Friedlingstein et al. 2022

SCMs are tuned to observations and ESMs, only ESMs in the future

ESM process representation

SCMS parameters are tuned to reproduce the ESM output (using CMIP scenarios for future)

SCMs increasingly used to assess and interpret climate mitigation

Structure of the carbon cycle inside these SCMs varies a lot

Models reproduce historical emissions to concentration

- Out of the box, models can reproduce observed record of CO₂ concentrations since pre-industrial
 - FF and LUC emissions data from Global Carbon Budget 2021 (Friedlingstein et al., 2022)
- Demonstrates their ability to capture carbon cycle in an emissions regime.

SCMs vary by ~100 Pg C in remaining carbon budget

• Using each model's TCRE and ZEC, we can compute remaining carbon budgets for a temperature change limit of 1.5°C.

SCMs show spread in remaining carbon budget and net-zero date

- Using each model's TCRE and ZEC, we can compute remaining carbon budgets for a temperature change limit of 1.5°C.
- From these budgets, we can project simplified linear ramp-down trajectories to estimate time-to-net-zero emissions.
- RCBs vary by ~100 Pg C and 20 years in net-zero date.

Replaced timescales in FaIR with a 9-box land and 7-box ocean model

Sampled biogeochemical feedbacks by perturbing parameters

FalR:

- 3 parameters that influence the carbon cycle
- 11 parameters \rightarrow energy balance model
- Concentrations of CH₄ and N₂O are held constant

Sampled biogeochemical feedbacks by perturbing parameters

FalR:

- 3 parameters that influence the carbon cycle
- 11 parameters \rightarrow energy balance model
- Concentrations of CH₄ and N₂O are held constant

FalR_bgc:

- 5 parameters that influence the carbon cycle
- 11 parameters \rightarrow energy balance model
- Concentrations of CH_4 and N_2O are held constant

Compare atmospheric CO₂ and carbon sinks to observations

We see minimal changes to TCRE (calculated using the esm-flat10-zec emissions trajectory)

Small shift in ZEC with different carbon cycle structures

CO₂ & T constrained

Use 3xp to diagnose emergent timescales of carbon removal

FaIR_bgc carbon cycle parameters connect timescales with processes

Variance explained (R²) by FaIR_bgc parameter

Variance explained (R²) by FaIR_bgc timescales

Variance explained (R²) by FaIR_bgc timescales

For comparison: Contributions to TCRE in C4MIP ESMs:

FaIR_bgc energy balance model parameters explain variance in temperature response

Variance explained (R²) by FaIR_bgc timescales

Variance explained (R²) by EBM parameters

EBM parameters the control energy fluxes and evolution of temperature

Variance explained (R²) by EBM parameters

Why do carbon sink timescales influence ZEC so little?

Why do carbon sink timescales influence ZEC so little?

No structural link between processes that govern carbon and energy fluxes!

Ocean carbon uptake and heat uptake are both impacted by circulation

Hypothesis: if we correlate ocean circulation with ocean heat uptake, the influence of carbon uptake on ZEC may change

Does the influence of carbon cycle timescales increase when thermal boxes are connected through correlation to carbon cycle boxes?

• Created a new Latin Hypercube ensemble with correlated parameter values for S_{ψ} and heat transport, κ_3 .

Can adding correlation between circulation rate and thermal transfer shift TCRE?

TCRE gets stronger!

Can adding correlation between circulation rate and thermal transfer shift ZEC?

CO₂ & T constrained

ZEC gets weakly more negative

CO₂ & T constrained

Uncorrelated: circulation affects CO₂ and climate through atmos. CO₂

In constraining to observed CO_2 and ΔT

We select other parameters that compensate for these circulation-driven outcomes.

Uncorrelated: circulation affects CO₂ and climate through atmos. CO₂

<u>Correlated</u>: circulation affects climate through atmospheric CO₂ and through heat uptake

Compensating shift in EBM parameters when constrained to CO₂ & T

In constraining to observed CO_2 and ΔT

We select other parameters that compensate for these circulation-driven outcomes.

Compensating shift in CC parameters when constrained to CO₂ & T

In constraining to observed CO_2 and ΔT

We select other parameters that compensate for these circulation-driven outcomes.

Implications for remaining carbon budget?

Drop in RCB in correlated ensemble \rightarrow different emissions necessary to meet mitigation goals.

Drop in RCB in correlated ensemble \rightarrow different emissions necessary to meet mitigation goals.

Drop in RCB in correlated ensemble \rightarrow different emissions necessary to meet mitigation goals.

Need for ESM-driven constraints on connections between

processes that influence carbon and climate :

 \rightarrow e.g. ESM carbon fluxes and heat fluxes as outputs from emissions-driven runs

→ Carbon cycle PPEs would allow us to sample across realizations of the carbon-climate system