Validating modeled atmospheric deposition timeseries with observed long-term records across the U.S.

Desneiges (Deni) Murray¹, Rebecca Buchholz², Louisa Emmons², Shawn Honomichl², Wenfu Tang², Simone Tilmes², and Adam Wymore¹

¹ University of New Hampshire, Department of Natural Resources and the Environment, Durham, NH USA

² Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA

Atmospheric deposition is a main mechanism for the loss of aerosols and chemicals back to the land surface

Long-term records of wet deposition

- The National Atmospheric Deposition Program National Trends Network (NADP NTN) provides a long-term record of precipitation chemistry
- Collect weekly composite deposition samples from 391 sites across the U.S.
- Records extend back to the 1980's

Samples are **wet-only composite** collected on ~7-day window

Modeled wet deposition chemistry and flux in CESM

https://ncar.github.io/CESM-Tutorial/notebooks/intro/components.html

Wet deposition parameterization in CAM6

Wet deposition parameterization in CAM6

- Considers in-cloud and below-cloud scavenging rates and solubility factors of aerosol and chemical species
- Wet removal is modeled based on a simple first order loss process and effective Henry's Law
 - <u>solubility factor</u> * scavenging coefficient * precipitation rate
 - <u>solubility</u> of gas is determined by Henry's Law
 - varies based on particle size

References: (Barth et al., 2000, Neu and Prather 2012, Lamarque et al., 2012)

Wet deposition parameterization in CAM6

- Considers in-cloud and below-cloud scavenging rates and solubility factors of aerosol and chemical species
- Wet removal is modeled based on a simple first order loss process and effective Henry's Law
 - <u>solubility factor</u> * scavenging coefficient * precipitation rate
 - <u>solubility</u> of gas is determined by Henry's Law
 - varies based on particle size

References: (Barth et al., 2000, Neu and Prather 2012, Lamarque et al., 2012)

Previous validation of wet deposition modeled outputs is limited

Objective: assess the accuracy of CAM6 modeled wet deposition over CONUS

Approach: pair CAM-chem modeled and NADP observed wet deposition records of SO_4^{2-} , NO_3^{-} , and NH_4^{+} from 2002-2022

Analyses:

- (1) identify potential sources of error between modeled and observed solutes
- (2) determine where modeled deposition parameters perform acceptably

Global model run of CESM2 & CAM6

- CESM2.2 CAM-chem as Boundary Conditions
 - DOI: 10.5065/XS0R-QE86
- Full chemistry 2002-2022
- 0.92° × 1.25° horizontal resolution
- 32 level vertical resolution
- MOZART T1 Chemistry (Emmons et al., 2020; Tilmes et al., 2019)
 Specified dynamics: MERRA2 nudged at 10%
- •Emissions:
 - Anthropogenic CAMS (Granier et al., 2019)
 - Fire QFED (Darmenov et al., 2015)
 - Biogenic online MEGAN scheme (Guenther et al., 2012)
- •Output: daily averages

CAM-chem Total Precipitable Water, January 2002

Merging modeled and observed wet deposition

Merged dataframe 333 sites 585 observations per site 183,000 total observations (x 3 vars) 500,000 datapoints for validation

<u>Merged dataframe</u> 333 sites 585 observations per site 183,000 total observations (x 3 vars) 500,000 datapoints for validation

What are potential sources of error between modeled and observed solutes?

Merged dataframe 333 sites 585 observations per site 183,000 total observations (x 3 vars) 500,000 datapoints for validation

Clean precipitation dataframe331 sites435 observations per site135,000 total observations (x 3 vars)400,000 datapoints for validation

Clean precip + chemistry dataframe 331 sites 350 observations per site 20%55,000 NH₄⁺, 110,000 SO₄²⁻, and 130,000 NO₃⁻ total observations 300,000 datapoints for validation

<u>Where</u> do modeled wet deposition parameters perform 'acceptably'?

Identifying areas where the model predicts wet deposition well is important for further sensitivity studies on drivers of wet deposition

KGE (Kling Gupta Efficiency) Metric

- Combined correlation, bias and variability metric
 - R, R², RMSE, slope of regression
- Provides a comprehensive assessment of the model's ability to reproduce the observed variability
- Calculated this metric per site to understand spatial variability

KGE > 0.4 = **acceptable** model performance

(*Reference*: Knoben et al., 2019)

<u>Where</u> do modeled wet deposition parameters perform 'acceptably'?

Key points and next steps

Major source of error for wet deposition SO_4^{2-} and NO_3^{-} may be inaccurate precipitation depth but error for NH_4^{+} may be emissions or chemistry.

The model has more acceptable spatial performance for SO_4^{2-} and NH_4^{+} while NO_3^{--} performs poorly in regions experiencing precipitation extremes.

Next Steps:

- Continue to evaluate error sources and develop "best practices" for using CAM-chem wet deposition data
- Validation of organic carbon and black carbon wet deposition solutes
- Assess differences in wet deposition accuracy between the Global model and MUSICA regionally refined over CONUS

Thank you!

Desneiges (Deni) Murray¹, Rebecca Buchholz², Louisa Emmons², Shawn Honomichl², Wenfu Tang², Simone Tilmes², and Adam Wymore¹

¹ University of New Hampshire, Department of Natural Resources and the Environment, Durham, NH USA

² Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA

