Preliminary Evaluation of CESM-CARMA with Asian Monsoon Airborne Observations

Ren Smith*, Simone Tilmes, Yunqian Zhu NSF NCAR / ACOM wsmith@ucar.edu

Presented at the 2024 CESM Workshop June 12, 2024

Asian summer monsoon (ASM) deep convection exports pollution to the global atmosphere

3D MUSICA rendering by Matt Rehme, NSF NCAR/CISL

Link to

animation

The ASM UTLS is associated with enhanced aerosol concentrations (the "ATAL")

Schematic courtesy of Oliver Eppers

Asian Summer Monsoon Chemical and Climate Impact Project (ACCLIP)

Principal Investigators: Laura Pan (NCAR), Paul Newman (NASA) Lead Co-Investigators: Elliot Atlas (Univ. Miami), William Randel (NCAR), Troy Thornberry (NOAA), Brian Toon (CU)

Whole air samples

Participated by:

US: NSF/CU; Korea: Multiple universities & NIER Japan: Universities and NIES; China: CAS/IAP Taiwan & UK: Academia Sinica & University of East Anglia Germany: AWI

We evaluate CARMA and MAM4 aerosol models using two ASM airborne campaigns

Model Simulations used for the evaluation

Model configuration	CAMchem	CAMchem
Horizontal resolution	0.9 × 1.25	0.9 × 1.25
Top of model	42 Km	42 km
Chemistry	TS1	TS1
Aerosol	CARMA	MAM4
Number of aerosol tracers	220	27
Throughput	2.6 years per day	3.6 years per day
Model cost (core hours per year)	31 K	7.5 K
Nucleation scheme	Zhao	Vehkamäki

CARMA: 2 groups with each 20 bins Pure sulfate: sulfate Mixed aerosol: sulfate, primary/ secondary organics, black carbon, sea-salt, dust

MAM4: Aitken, primary carbon, accumulation and coarse mode Mixed aerosol: sulfate, primary/ secondary organics, black carbon, sea-salt, dust

CESM-CARMA black carbon compares well with ACCLIP airborne observations!

ACCLIP black carbon observations courtesy of J. Schwarz and the SP2 team

The new (current) model convective removal scheme allows BC to be represented correctly

ACCLIP black carbon observations courtesy of J. Schwarz and the SP2 team

There is a tropospheric high bias in CARMA and MAM4 sulfate in the ASM region

SO2 emissions in China have been rapidly declining in recent years

Since we don't have an updated emission inventory (work in progress), we just performed two sensitivity studies: 50% anthropogenic SO₂ and 10% anthropogenic SO₂ (applied globally)

Artificially reducing SO2 emissions results in an improved representation of sulfate aerosol

CAM-Chem and 2017 WACCM show differences in UTLS (both use MAM4)

Early look at size distributions in the UT shows promising comparison, although CARMA is on the lower end of the observational range

<u>Summary</u>

- CESM-CARMA has excellent agreement with black carbon, an improvement compared to MAM4. The current convective removal scheme enables this agreement.
- CARMA and MAM4 aerosol schemes both show a high bias in tropospheric sulfate. A high bias in SO2 emissions over China likely contributes
 - Reducing the emissions bias for sensitivity runs is planned as future work
 - Sensitivity to vertical resolution / model top will also be explored
 - Improving the sulfur cycle, adding nitrates, and improving aqueous phase chemistry may also lead to further improvement
- CARMA may not represent the large quantity of new particle formation events observed in ASM convective outflow during ACCLIP
- Future work will expand to other campaigns (emission / transport regimes), and include balloon-borne obs comparisons
 Thank you!!!

SO2 emissions in China have been rapidly declining in recent years

Convective transport is behaving appropriately in the CESM-CARMA run

Examples for August 1 2022, 0Z at 150 hPa. Clear evidence of convective transport over northern India. CO, SO2 and propane are all enhanced. Sulfate is diminished, suggesting secondary production in the UTLS