

Chemistry-Climate Working Group

Simone Tilmes -NCAR/ACOM Chemistry-Climate co-chair Rafael Fernandez – CONICET, UNCUYO, Chemistry-Climate co-chair Rebecca Buchholz, Shawn Honomichl - NCAR/ACOM Chemistry-Climate Liaison Francis Vitt – NCAR/ACOM Software Engineer

June 12, 2024

CESM Chemistry Options

Fully coupled simulations with chemistry are required for GHG chemistry runs

MOZART Family of Chemical Mechanisms

- Increasing complexity as computing
 power increases
- The MOZART-Climate mechanism is comparable to MOZART-2 (Horowitz et al., 2003)
- Similar mechanism used in GFDL AM4 (Horowitz et al., 2019)
- MOZART-Climate not optimal for air quality studies, but should appropriately simulate oxidants and aerosols for chemistry-climate studies and for creating specified oxidants for CAM

Aerosol Options in CESM2

MAM5 for stratospheric chemistry options

			Atlantic 0-30°S
Aerosol Model	CARMA	MAM4	10 ⁴ 1-6km
Size description	40 bins (20 per group) Mixed group: 0.05–8.7 μm Pure group: 0.2 nm to 1.3 μm	Primary carbon (0.06–0.30 μm) Aitken (0.015–0.053 μm) Accumulation (0.058–0.48 μm) Coarse modes (0.4–40 μm)	10^{3}
Species types	Sulfate, primary organic, secondary organic, black carbon, sea salt, dust	Sulfate, primary organic, secondary or- ganic, black carbon, sea salt, dust	10 ⁰
Groups and species	Mixed group: MX; pure group: PRSULF MX: total (incl. SULF), BC, OC, SALT, DUST SOA (or SOA1, SOA2, SOA3, SOA4, SOA5)	Internally mixed modes of so4, pom, bc, ncl, dst soa (or soa1, soa2, soa3, soa4, soa5)	$\overline{}$ 10 ⁻¹ 10 ⁻²
Morphology (core or shell) for optics	Core: BC, DUST Shell: SULF, OC, SALT, H2O		$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Tilmes et al., 2023

Ongoing (SIMA and MUSICA Efforts) Implementation of an updated Aerosol Interface

New ADF Chemistry Options in Development

Log-P

CAM Diagnostics

UCAR

Test Case: f.cam6_3_160.FCMT_climate_chemistry_ne30.moving_ - years: 1996 - 2000 Baseline Case: f.cam6_3_160.FCMT_ne30.moving_mtn.002 - years: 1996 - 2000 Spe	New Plots: Ozone Climatology Chemistry/Aerosol comparisons AODVIS comparisons CO MOPITT 	Q_logp U_logp T_logp RELHUM_logp O3_logp CH4_logp CO_logp N2O_logp NO_logp NO2_logp NOX_logp SO2_logp
No category yet	O3 DIAGNOSTICS nhpolarwest_SeasonalCycle nhpolarwest_Profile	BIGALK_logp C2H4_logp C2H502_logp C2H50H_logp C2H500H_logp C2H6_logp C3H6_logp C3H702_logp C3H700H_logp
NCAR		

Model Simulations with the Recent Code Base CAMchem TS1 vs CAMchem Climate Chemistry (1996-2000)

Model Simulations with the Recent Code Base CAMchem TS1 vs CAMchem Climate Chemistry (1996-2000)

25K/yr 2 yrs a day

NCAR UCAR

Model Simulations with the Recent Code Base CAMchem Climate Chemistry vs CAM (1996-2000)

Secondary Organic Aerosol (ANN)

	TS1	Chemistry	CAM
		Climate	
RESTOM	2.48	2.42	2.16
POM-BURDEN (Tg)	0.57	0.56	0.53
SOA-BURDEN (Tg)	0.76	0.72	0.75
BC-BURDEN (Tg)	0.14	0.13	0.13
DUST-BURDEN (Tg)	37.07	37.51	37.25
SALT-BURDEN (Tg)	10.87	10.89	10.79
SO4-BURDEN (TgS)	0.63	0.63	0.55

TS1 and Chemistry-Climate show similar aerosol burden compared to CAM. However, sulfate is lower in CAM (chemical production) -> **differences in RESTOM**

CAMchem Climate-Chemistry vs CAM (1996 - 2000)

2001-2020

Terra MODIS AOD 550 nm Jul Mean 0.19

CESM Control AOD 550 nm Jul Mean 0.13

MERRA2 AOD 550 nm Jul Mean 0.13

CESM Climate Chemisty AOD 550 nm Jul Mean 0.14

CESM configuration show a high bias due to dust and sea-salt and low bias over the Northern Hemisphere

-> Likely impact on the North to South gradient in RESTOM -> Updates expected with the new dust emission implementation

CAM-chem Development Timeline for CMIP7

Announcement: MUSICA input data on glade

- /glade/p/ locations were removed by CISL early 2024
- A need to move and **consolidate input data locations**

*** Finalized locations by the end of Summer 2024 ***

