

A useful framework for understanding regional mean precipitation change under warming: the role of water cycling rate

Kyle Heyblom^{1,2}, Adriana Bailey³, Hansi Singh²

¹School of Earth and Ocean Sciences, University of Victoria, BC, Canada

²Planette AI, CA, USA

³Department of Climate and Space Sciences and Engineering, University of Michigan, MI, USA

ESMs tend to agree on the general spatial pattern of annual mean precipitation change

Generally, expect similar change as moisture divergence: 'wet-getwetter, dry-get-dryer' Multi-model mean precipitation change (SSP2-4.5; 2081-2100 vs 1995-2014; SON)

Deep tropic wetting

Subtropical drying

 Juice
 Mid- to high latitude wetting

 Juice
 Juice

 Juice
 Juice
</t

(IPCC AR6 WG1, Ch. 8)

38

However, little agreement between ESMs on specifics

Multi-model mean precipitation change (SSP2-4.5; 2081-2100 vs 1995-2014; SON)

Little agreement on even direction of change Stippling = low model agreement High model agreement (≥80%) Color Low model % agreement (<80%)

(IPCC AR6 WG1, Ch. 8)

38

3

- Can we develop a comprehensive and mechanistic framework for why the spatial pattern of mean precipitation changes under warming?
- Can we understand these changes as a set of intuitive physical drivers?
- Which of these drivers are well-constrained amongst ESMs and scenarios?

Precipitation as the aggregate of moisture transported from all evaporation sources

Precipitation as the aggregate of moisture transported from all evaporation sources

Following Singh et al. (2016):

$$\mathbf{P} = \mathbf{X}_{\mathbf{e}}\mathbf{E}$$

Changes in mean precipitation the result of:

$$\mathbf{P'} = \mathbf{X_e}\mathbf{E'} + \mathbf{X'_e}\mathbf{E}$$

Change in source evaporation amount Redistribution of where moisture from each source region precipitates

Spatial pattern of precipitation change dominated by precipitation redistribution (X'_eE)

$$\mathbf{P'} \approx \mathbf{X_e}\mathbf{E'} + \mathbf{X'_e}\mathbf{E}$$

Multi-model mean precipitation response

— 1% CO ₂ (120-150)	— SSP2-4.5 (2070-2100)
	— SSP5-8.5 (2070-2100)
— Historical (1985-2015)	

Spatial pattern of precipitation change dominated by precipitation redistribution ($X'_e E$)

Driven by increased evaporation amount

— 1% CO ₂ (120-150)	
Abrupt 4xCO ₂ (120-150)	
— Historical (1985-2015)	

Spatial pattern of precipitation change dominated by precipitation redistribution ($X'_e E$)

Precipitation redistribution ($X'_e E$) dominated by locally disparate response in evaporation (η) and moisture divergence (α)

$$\mathbf{X'_e}\mathbf{E} \approx (\eta - \alpha)\nabla \cdot \mathbf{Q}$$

 $\eta \equiv \frac{\mathbf{E'}}{\mathbf{E}}$ $\alpha \equiv \frac{\nabla \cdot \mathbf{Q'}}{\nabla \cdot \mathbf{Q}}$

10

*Check out our upcoming manuscript for full derivation!

Precipitation redistribution ($X'_e E$) dominated by locally disparate response in evaporation (η) and moisture divergence (α)

$$\mathbf{X'_e}\mathbf{E} \approx (\eta - \alpha)\nabla \cdot \mathbf{Q}$$

1% CO₂ (120-150) SSP2-4.5 (2070-2100) Abrupt 4xCO₂ (120-150) SSP5-8.5 (2070-2100) Historical (1985-2015)

Recognizing:

- α can be approximated using humidity change
- α and η are roughly constant globally $(\eta - \alpha)\nabla \cdot Q \approx \frac{\overline{\gamma}'}{\overline{\gamma}}\nabla \cdot Q$

 $\eta \equiv \frac{\mathbf{E}'}{\mathbf{F}} \quad \alpha \equiv \frac{\mathbf{V} \cdot \mathbf{Q}}{\nabla \cdot \mathbf{O}}$

*Check out our upcoming manuscript for full derivation!

Global water cycling rate adjustment ($\overline{\gamma}'$) explains important aspects of precipitation redistribution ($X'_e E$)

$$\mathbf{X'_e} \mathbf{E} \approx \overline{\gamma'} / \overline{\gamma} \nabla \cdot \mathbf{Q}$$

1% CO ₂ (120-150)	
Abrupt 4xCO ₂ (120-150)	
Historical (1985-2015)	

Recognizing:

- α can be approximated using humidity change
- α and η are roughly constant globally

$$(\alpha) \nabla \cdot Q \approx 1$$

12

 $\eta \equiv \frac{\mathbf{E}'}{\mathbf{E}} \quad \alpha \equiv \frac{\mathbf{V} \cdot \mathbf{Q}}{\nabla \cdot \mathbf{O}}$

*Check out our upcoming manuscript for full derivation!

Slowed water cycling rate results in a *lengthened moisture transport* through atmosphere under warming

Reduced water cycling rate and corresponding transport distance increase **robust across all models and scenarios**

— 1% CO ₂ (120-150)	
Abrupt 4xCO ₂ (120-150)	
— Historical (1985-2015)	

Global water cycling rate has **large** simulated S/N

An opportunity:

- We can directly compute water cycling rates and transport distances in CESM
- iCESM1 (isotope-enabled version) allows for the simulation of source tracers – can investigate changes in moisture transport distance
- Recent developments have allowed for direct computation of residence times (or cycling rates) in CAM6 *(Fiorella et al., 2021)*

iCESM1.2: 2070-2100 vs. 1950-1980

If you would like to discuss further

Contact:

kheyblom@uvic.ca kyle.heyblom@planette.ai

Also watch for our upcoming manuscript submissions

