Quantifying the Response of the North Atlantic Oscillation to a Wide Range of CO_2 Forcing

Ivan Mitevski¹, Simon Lee², Gabriel Vecchi¹, Lorenzo Polvani², Clara Orbe^{2,3}

¹Princeton University, NJ

 2 Columbia University, NYC

 $^3\mathrm{NASA}$ GISS, NYC

June 12, 2024

North Atlantic Oscillation (NAO)

• The principal mode of atmospheric variability in the North Atlantic region in both winter and summer, associated with variability in eddy-driven jet

NAO trend due to GHG forcing?

Historical:

- Positive trend from 1950s to 1990s, which reversed through early 2010s.
- No clear signal due to historical GHG-caused warming.

Future:

- Some Earth System Models project a more positive NAO under high-emission 21st-century scenarios
- Signal-to-noise paradox: uncertainties persist regarding the exact response of the NAO in a warmer world

JFM Season Standardized NAO Index (1950-2023)

cpc.ncep.noaa.gov

NAO trend due to GHG forcing?

Historical:

- Positive trend from 1950s to 1990s, which reversed through early 2010s.
- No clear signal due to historical GHG-caused warming.

Future:

- Some Earth System Models project a more positive NAO under high-emission 21st-century scenarios
- Signal-to-noise paradox: uncertainties persist regarding the exact response of the NAO in a warmer world

Q1. How do the *summer* and *winter* NAO **mean state and variability** change at high CO₂? Q2. Are there any structural changes in the NAO (e.g., spatial shift)?

Methods

- Use high CO_2 forcing of $2\times$, $4\times$, and $8\times CO_2$ due to the signal-to-noise paradox in the North Atlantic
- Monthly data: DJF for winter, JJA for summer

Models:

- 12 LongRun MIP models (Rugenstein et al., 2019): we utilize experiments ran for up to 1000 years to mitigate the decadal variability of the NAO
- 3 of our own models: CESM1-LE, GISS-E2.1-G, GFDL-FLOR model
- 24 CMIP6 models (mostly for 4xCO2)

NAO definition

- We define the **winter NAO** as the difference in sea level pressure (SLP) between a box over the Azores high and the Iceland low in DJF (traditional definition, e.g. Stephenson et al. 2006)
- The summer NAO is the SLP difference between the British Isles high and Iceland low in JJA (similar to, e.g. Dunstone et al. 2023)
- Note: results are not sensitive to the exact choice of boxes
- The NAO can also be defined as the leading EOF within the domain

NAO index regressed to SLP (upper) very similar to EOF1 (lower panels)

NAO index regressed to SLP (upper) very similar to EOF1 (lower panels)

- The regression of SLP with the NAO 2-box index closely resembles EOF1, indicating that the NAO 2-box index correlates well with leading pattern of SLP variability.
- Furthermore, the changes at each CO₂ are very similar between the SLP regressed onto NAO and EOF1.
- $\bullet\,$ 2-box index easier to interpret, so we use it to quantify the NAO response to higher $\rm CO_2$ forcings

• Winter NAO becomes more positive with increasing CO₂ concentrations in almost all models.

NAO 2-box index <u>mean</u> response in hPa

• Winter NAO becomes more positive with increasing CO₂ concentrations in almost all models.

• Summer NAO also becomes more positive in most models.

NAO 2-box index variability response in hPa

NAO 2-box index variability response in hPa

• Variability decreases at higher CO₂ forcing in most models in winter and summer.

NAO (2-box) mean response decomposed to High and Low

• Positive shift in multi-model winter NAO (2-box index) is roughly equally due to the strengthening of both the Azores high (red) and the Iceland low (blue)

NAO (2-box) mean response decomposed to High and Low

• Positive shift in multi-model winter NAO (2-box index) is roughly equally due to the strengthening of both the Azores high (red) and the Iceland low (blue)

• Positive shift in multi-model summer NAO is primarily due to a deepening Iceland Low

• The multi-model decrease in winter NAO variability is roughly equally due to a decrease in variability of both the Azores high (red) and the Iceland low (blue).

• The multi-model decrease in winter NAO variability is roughly equally due to a decrease in variability of both the Azores high (red) and the Iceland low (blue).

• The multi-model NAO decrease in variability in JJA is primarily due to a decrease in variability in the British Isles.

Spatial shift of NAO

• The Azores High node of the winter NAO shifts slightly northeast (in both EOF and 2-box definitions)

Spatial shift of NAO

• The Azores High node of the winter NAO shifts slightly northeast (in both EOF and 2-box definitions)

• Similar but clearer northeast shift in summer

Summary

- The North Atlantic Oscillation (NAO) becomes **more positive** in both winter and summer at high CO₂ forcings
- \bullet Meanwhile, the ${\bf NAO}$ variability decreases in both winter and summer
- NAO mean is more positive, but variance is decreased, so **extremes** may not scale linearly with the mean
- The spatial structure of NAO changes, with the summer low shifting northeast. Capturing magnitude of change more challenging; fixed 2-box method may **underestimate** changes.

Thank you!