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Mountain West Hydroclimate Adapted from
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We focus on winter and springtime snowpack
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Snow Water Equivalent (SWE)

Q <
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< ECMWF

Avalanche.org

* The amount of liquid water from
melting the snowpack.

* We focus on SWE from ERA5
reanalysis and CMIP6 models.

* Validated ERA5 SWE variability
against SNOTEL (not shown).



Goals of this work

1. How is SWE in the mountain west impacted by climate change?

2. What part of the model physics is responsible for errors in SWE
predictions?
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SWE decreases during historical climate change.
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SWE decreases during historical climate change. ‘

Precipitation in Mountain West
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SWE decreases during historical climate change. ‘
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ERA5 and CMIP6 SWE in Mountain West
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ERA5 and CMIP6 SWE in Mountain West
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ERA5 and CMIP6 SWE in Mountain West
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Gaussian Process Emulation
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Emulating SWE

SWEMar — f(taSOd—MarrP o EOct—Mar)

Train the GP model (f) with ERAS5 surface air temperature and moisture
convergence.



Predicted (o)

March SWE prediction
From ONDJFM tas, P-E
R2 =0.63, slope =1.01

kernels: ['"White', 'Exponential’, 'Polynomial’]
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Use the GP model trained on reanalysis with
CESM2

SWEmar = f(tasoct—mar P — Eoct—mar)
ERAS CESM2

* Large scale (moisture convergence and temperature) from model.
* Small scale from GP model trained on ERAS.



During historical simulation and SSP126
CESM2 matches well with the GP model

CESM2 predicted and GPE predicted March SWE
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Higher warming model simulations lead to a
large uncertainty in the GP prediction.

CESM2 predicted and GPE predicted March SWE
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So what can we learn from this?

* GP model prediction of historical SWE with CESM input variables
IS very good!



So what can we learn from this?

* GP model prediction of historical SWE with CESM input variables
IS very good!

* Errors in models’ prediction of historical climate change is linked
to their prediction of surface temperature and moisture
convergence.
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Future work will include using a perturbed parameter ensemble to
further understand what aspects of the model modulate SWE.
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Moisture Convergence (mm/day)

Moisture Convergence in Mountain West
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ASWE in Mountain West
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