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ERSSTv5 SSTAs, January 1998

Model-analog framework

PiControl: January, year 336

Model-analog

Use the subsequent evolution of the 
model-analog match as a forecast



For some applications, model-analogs 
forecasts can be as skillful as dynamical 
forecasts (e.g., Ding et al. 2018, 2019)

But….

Ding et al. (2018)

Model-analog framework



• Comparisons between model-analog forecasts and dynamical forecasts are 
rarely apples-to-apples.

• Skill differences could be related to myriad factors (e.g., different models 
and/or different initialization data).

• Makes it difficult to fully understand the added value of the model-analog 
technique (or fully initialized dynamical forecasts).

• Part 1: Create model-analogs from CESM2-LE using the same data 
used to initialize CESM2-SMYLE.

Model-analog framework
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Surface temperature skill verified against ERA5 
SMYLE vs Model-Analogs
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ACC at 95% confidence
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SMYLE vs Model-Analogs
Choosing analogs using different variables

SST = Sea surface temperature (FOSI)
Z500 = 500mb geopotential heights (JRA-55)
SM = Soil moisture (TRENDY)

CESM2-MA
Nov initialization
0-month lead forecast
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SST +Z500

SMYLE vs Model-Analogs
November initialization, 0-month lead forecast



SST

SST +Z500

SMYLE vs Model-Analogs
November initialization, 0-month lead forecastPart 1 Summary:

• Using the same* ocean initial state, model-analog forecasts from CESM2-LE are 
largely indistinguishable from SMYLE.

• Model-analog skill at short lead times can be improved by including the 
atmosphere as part of the selection criteria.



• High-resolution forecasts are expensive!

• Part 2: High-resolution model-analog hindcasts based on CESM-HR.

Model-analog framework



High-res model-analogs

CESM-HR
• 350-year picontrol, 0.1˚ ocean and 0.25˚ atmosphere (Chang et al. 2020)

HR-MA
• Model-analog forecasts drawn from CESM-HR.

• Analogs are selected by matching to detrended monthly mean SSTA from 
GLORYS ocean reanalysis from 30˚S-30˚N at 1˚ resolution. 

• Based on chosen climate states, create forecasts at 0.1˚ for specific regions.

• Skill verified against GLORYS from 1993-2020. Keep top 10 matches.



Jacox et al. (2023)

HR-MA

Sea Surface Temperature
Dynamically downscaled seasonal forecasts

Stippling: insignificant skill 
at 95% confidence
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Averaging within 75km of the coastline…



SST SSH Bot. Temp.
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SST SSH Bot. Temp.

Initialization InitializationInitialization

Email: dillon.amaya@noaa.govQuestions?

Part 1 Summary:
• Using the same* ocean initial state, model-analog forecasts from CESM2-LE are 

largely indistinguishable from SMYLE.

• Model-analog skill at short lead times can be improved by including the 
atmosphere as part of the selection criteria.

 Part 2 Summary:
• High-res model-analog forecasts are very promising! More to come! 



Extra Slides



Not perfect, but close…average RMSE is 
~2x larger in CESM2-MA than in SMYLE

SMYLE vs Model-Analogs

0.18˚C 0.32˚C

November initialization

SMYLE CESM2-MA

RMSE between forecasts and FOSI at 0–month lead



Nov initialized Nino3.4 skill for different ensemble sizes

SMYLE vs Model-analogs



Sea Level Pressure



Precipitation



Jacox et al. (2023)

Dynamically downscaled seasonal forecasts iHESP-MA

Sea surface height



Bottom temperature

Dynamically downscaled seasonal forecasts

iHESP-MAJacox et al. (2023)



Sea surface temperature
iHESP-MA



Sea surface height
iHESP-MA



NE Pac onlyTropics only Tropics + NE Pac 60˚S-60˚N

Sea surface temperature
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