BUILDING SEASONAL CLIMATE FORECASTS FROM LARGE ENSEMBLES+

Dillon Amaya, Stephen Yeager, Mike Jacox, Matt Newman, and Mike Alexander

CESM Workshop June 10-12, 2024

NOAA

ERSSTv5 SSTAs, January 1998

If two states in the climate system are very close to each other, they can be called each other's "analog"

ERSSTv5 SSTAs, January 1998

If two states in the climate system are very close to each other, they can be called each other's "analog"

ERSSTv5 SSTAs, January 1998

Model-analog

PiControl: January, year 336

Use the subsequent evolution of the model-analog match as a forecast

For some applications, model-analogs forecasts can be as skillful as dynamical forecasts (e.g., Ding et al. 2018, 2019) But....

Ding et al. (2018)

- Comparisons between model-analog forecasts and dynamical forecasts are rarely apples-to-apples.
 - Skill differences could be related to myriad factors (e.g., different models and/or different initialization data).
- Makes it difficult to fully understand the added value of the model-analog technique (or fully initialized dynamical forecasts).
- <u>Part I</u>: Create model-analogs from CESM2-LE using the same data used to initialize CESM2-SMYLE.

	Single-to-Multiyear Large Ensemble (SMYLE)	CESM2 Model-Analogs (CESM2-MA)
Model:	CESM2	CESM2-LE (50-members) _{N_{lib} = 2500}
<u>Record lengt</u>	<u>h:</u> 1970-2019	1970-2019
Forcing scena	ario: Hist+SSP3-7.0 (SMBB)	Hist+SSP3-7.0 (SMBB)
Initialization	fields: FOSI (ocn), JRA-55 (atmo), TRENDY (Ind), globally	Monthly mean FOSI SST 60°S-60°N
<u>Initialization</u>	times: I st of Feb, May, Aug, Nov	Jan-Dec
Ensemble siz	20 members	20 members

Far from the initial condition, CESM2-MA skill is largely indistinguishable from SMYLE Surface temperature skill verified against ERA5

0.8

Stippling: Significantly better ACC at 95% confidence

Far from the initial condition, CESM2-MA skill is largely indistinguishable from SMYLE

Stippling: Significantly better ACC at 95% confidence

Precipitation

Sea Level Pressure

Far from the initial condition, CESM2-MA skill is largely indistinguishable from SMYLE

> Stippling: Significantly better ACC at 95% confidence

	SMYLE	CESM2-MA
Model:	CESM2	CESM2-LE (50-members) _{Nlib} = 2500
Record length:	1970-2019	1970-2019
Forcing scenario:	Hist+SSP3-7.0 (SMBB)	Hist+SSP3-7.0 (SMBB)
Initialization fields:	FOSI (ocn), JRA-55 (atmo), TRENDY (Ind), globally	FOSI SST, JRA-55 Z500, and/or TRENDY Soil Moist. (SM), 60°S-60°N
Initialization times:	I st of Feb, May, Aug, Nov	Jan-Dec
Ensemble size:	20 members	20 members

Choosing analogs using different variables

SST

November initialization, 0-month lead forecast

Part I Summary:

- Using the same^{*} ocean initial state, model-analog forecasts from CESM2-LE are largely indistinguishable from SMYLE.
- Model-analog skill at short lead times can be improved by including the atmosphere as part of the selection criteria.

- High-resolution forecasts are **expensive!**
- <u>Part 2</u>: High-resolution model-analog hindcasts based on CESM-HR.

High-res model-analogs

CESM-HR

• 350-year picontrol, 0.1° ocean and 0.25° atmosphere (Chang et al. 2020)

HR-MA

- Model-analog forecasts drawn from CESM-HR.
- Analogs are selected by matching to detrended monthly mean SSTA from GLORYS ocean reanalysis from 30°S-30°N at 1° resolution.
- Based on chosen climate states, create forecasts at 0.1° for specific regions.
- Skill verified against GLORYS from 1993-2020. Keep top 10 matches.

Sea Surface Temperature

Jacox et al. (2023)

Stippling: insignificant skill at 95% confidence

Averaging within 75km of the coastline...

Part I Summary:

- Using the same^{*} ocean initial state, model-analog forecasts from CESM2-LE are largely indistinguishable from SMYLE.
- Model-analog skill at short lead times can be improved by including the atmosphere as part of the selection criteria.

Part 2 Summary:

• High-res model-analog forecasts are very promising! More to come!

Extra Slides

Not perfect, but close...average RMSE is ~2x larger in CESM2-MA than in SMYLE

November initialization

RMSE between forecasts and FOSI at 0-month lead

RMSE (°C)

Sea Level Pressure

Precipitation

Sea surface height

Dynamically downscaled seasonal forecasts

iHESP-MA

Jacox et al. (2023)

Bottom temperature

Dynamically downscaled seasonal forecasts

Sea surface temperature

iHESP-MA

Sea surface height

Sea surface temperature

