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Observational evidence of the impact of rivers on upper ocean variability:

Bay of Bengal Monsoon Experiment (BOBMEX)
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Loscatlongf Ly » Spectacular arrival of a freshwater plume = MLD decreased from ~30 m to ~10 m. The mixed layer temperature remained in
agar fanya = Salinity fell by about 4 psu the range of 0.5°C.

» The amount of rainfall received at observation site could not explain the observed freshening.
= Surface salinity in the northern Bay of Bengal (at 15° N) varies coherently with the rainfall over
Ganga-Brahmaputra catchment area on intra-seasonal time scale and with lag of about 60 days.




Interaction with the Indian Summer Monsoon
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* Enormous freshwater discharge from the Ganges-
Brahmaputra, Irrawaddy, and several other major rainfed
rivers makes the northern BoB one of freshest regions of
the world ocean.

* BoB plays an important role in determining monsoon
precipitation by facilitating the genesis of monsoon lows

e B o e T o and depressions and controlling the air-sea interactions

Observed genesis (black dots) and tracks associated with the monsoon intra-seasonal oscillations.
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(curves) of low-pressure systems forming
during the boreal summer monsoon season
(JJAS), and climatology of sea-surface salinity

(shading).



(d) All LPS
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Problems plaguing CFSv2 at S28S scales
(2017)
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Under-estimation of synoptic variability in the Bay of Bengal.

Too few systems with restricted inland propagation.
Slower northward propagation of Monsoon intra-seasonal oscillations in CFSv2.

Associated biases in precipitation and air-sea interactions.




How can we improve coupled models?

* Improve the existing model physics and parameterization.
 Add new processes which are not yet represented in the model.

Missing rivers in CEFSv2

Atmospheric Model
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Prescribing river-runoff is not a good strategy, specially for coupled models such as the
CFSv2.




How to represent horizontal transport of freshwater?? ~ GFSIntegraton 0
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LPS Track Density
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Defined as the number of tracks crossing a particular grid point.

The track density is higher in RIV run in the north-western BoB and the adjoining parts over

the Indian landmass.

Enhanced rainfall over landmass compared to CTL run of the order of 1-1.5 mm day.

Enhanced LPS activity and associated rainfall in RIV.
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 North-west oriented temperature gradients, strengthen post LPS
genesis.

e Crucial for LPS simulation.

 Enhance moisture availability to the system.

* Primarily governed by the asymmetric SHF term.

Mixed Layer Temperature Tendency




The lag composites of various terms wrt to MISOs active phase, lag-0 implies peak rainfall over Central India
Category 3 events: Small MLD Large BLT group (MLD<28m; BLT>11m)
CTL RIV [

Lags (in days) from MISO peak
* For thick BL events, MLD is shallower post convection and barrier layers are thicker in RIV.
* Minor differences between CTL and RIV in the pre-convection period.
» The SST anomalies are cooler during convection indicating a stronger active spell (rainfall
anomalies are greater though not statistically significant).
« Shoaling of mixed layers post convection, and formation of thick barrier layers cause intense
post-convection break.

O — 33': (1) [ o 0.20 - (11)
o Pl £ 301 i L = ‘ :
P ~ 4\ gx-\ I o e |
5 ol A\ g |
o pum| 1 = ! ~— o™ w0 ]
ey 214 E L 2 520 4 i L
° pui " T T T T T E :
~ 30 20 -10 O 10 20 30 AR AR : M M -
“ GIO-....l:...l.l..llun..I:J..I.-uu
ﬁ 16 e b , e o b J >} o ] :
(111) e N |
: 5% 7 i
BERCATE i
C3 % S ] :
EE e
@ RETE | -
o 8 : L DAL L l L DL B : -8.0 : T T :I 1 T
O 30 20 -10 0 10 20 30 30 20 10 0 10 20 30
=i
b




Composite vertical structure

isobaric level

isobaric level
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= Improved upper ocean variability leads to enhanced air-sea interactions in the Bay.
Stronger vorticity and specific humidity ahead of the convection center associated with

Fields are composited wrt centre of convection
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= Stronger northward propagating MISO pulse.
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(a) TRMM (OISST) (b) CTL (c) RIV
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= The northward propagating convection band has stronger positive anomalies in
the RIV run.

» The positive SST anomalies preceding an active phase are well organized in the RIV run.

= The subsequent cooling of SST's 1is also stronger which is due to the stronger low-level
cyclonic circulation associated with the MISO event.

= The MISO propagation speed is slower in CTL, which has improved in RIV.

Coherently propagating MISO events




Mechanism

Freshwater from rivers

Improved upper ocean stratification

v

Stronger Enhanced
asymmetric temperature
surface heat flux ’ gradients in Bay of

forcing Bengal
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Frequent LPS genesis
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Longer-lived LPS with greater
inland propagation

Better representation of
convection at synopticto

\4

Post convection shoaling of mixed layer and
formation of thick barrier layers

v

Changes to mixed layer heat budget

 J

Enhanced air-sea interactions
restricted to shallow mixed layer

\

Enhanced specific humidity and vorticity
profiles north of MISO convection center

Stronger MISO associated circulation
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intra-seasonal time-scales

Get in touch at: ankur@tropmet.res.in

Thankyou.
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