

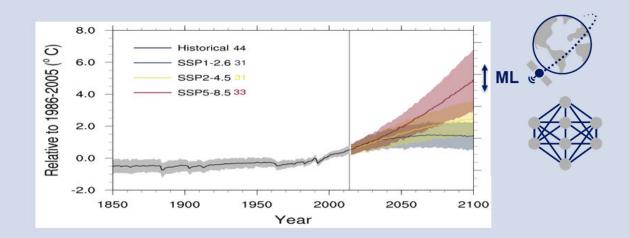
Understanding and Modelling the Earth System with **Machine Learning**

Veronika Eyring ^{1,2}

¹ Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany ² University of Bremen, Institute of Environmental Physics (IUP), Bremen, Germany

Acknowledgments:

Group Members: Mierk Schwabe, Pauline Bonnet, Max Bouman, Arthur Grundner, Helge Heuer, Lorenzo Pastori, Manuel Schlund et al. **USMILE PIs:** Pierre Gentine, Gustau Camps-Valls, Markus Reichstein **Collaborators:** Tom Beucler, Marco Giorgetta, Dave Lawrence, Jakob Runge



CESM Workshop 2024, 10 June 2024, Boulder, CO, USA

Outline

Motivation

Part 1: ML-based Parametrizations for Cloud Cover

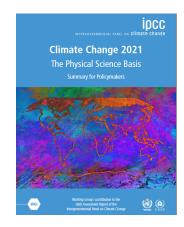
Feedforward NN in "real world" settings (ICON-A)

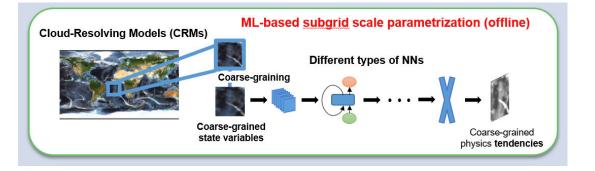
Part 2: Improved Trust in ML Models and Generalization

- Equation Discovery & Physical constraints (ICON-A)
- Causal Deep Learning & Stochastic Neural Nets (SPCAM/CESM)
- Reduction of Systematic Errors in Hybrid ESMs promising
- ML Challenges remain (stability, generalization)

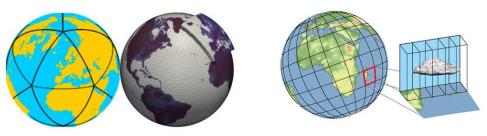
Part 3: ML-based Model Tuning and Evaluation

Summary & Vision

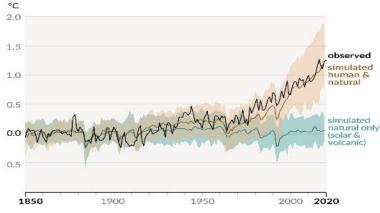




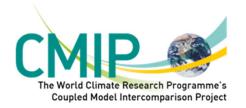
ICON-A / -ESM



ICON: Icosahedral Non-Hydrostatic (MPI-M, Giorgetta et al. 2018); SPCAM: Superparameterized Community Atmosphere Model

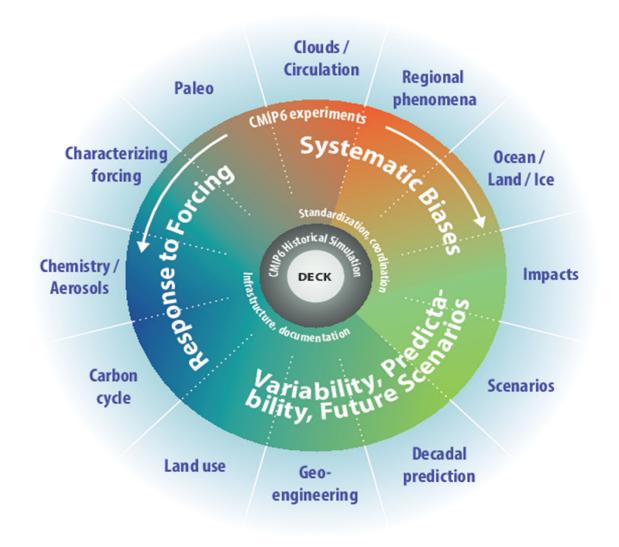


SPCAM

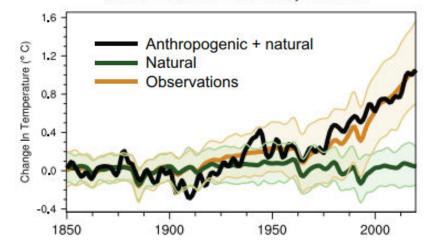


CMIP6 Provided Scientific Understanding & Fundamental Source for IPCC AR6

World Climate Research Programme's (WCRP) Coupled Model Intercomparison Project (CMIP)

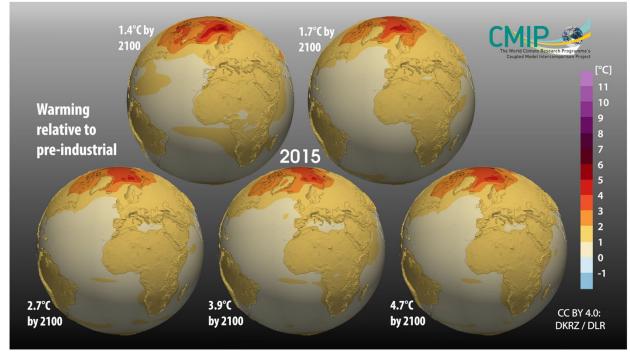


Eyring et al., Overview CMIP6, GMD, 2016



Near-surface air temperature

Eyring et al., IPCC WGI AR6 Ch3, 2021

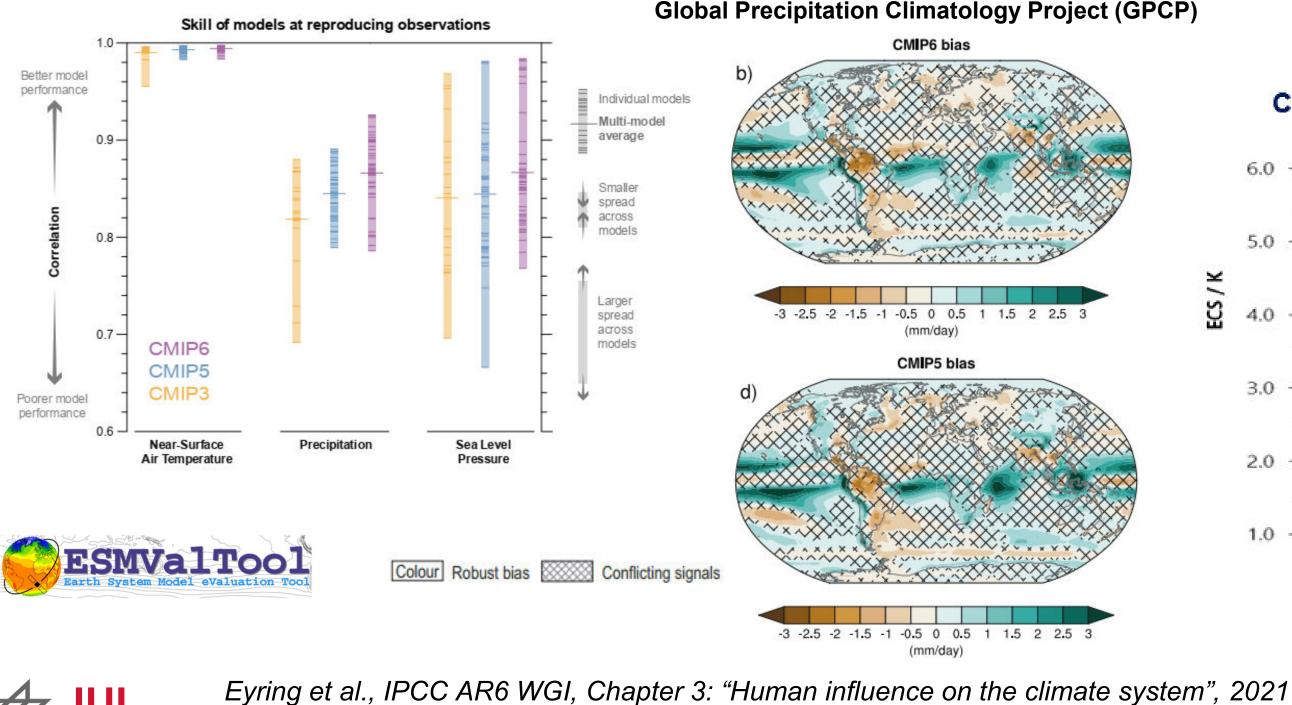


based on Lee et al., IPCC WGI AR6 Ch4, 2021

It is **unequivocal** that human influence has warmed the atmosphere, ocean and land.

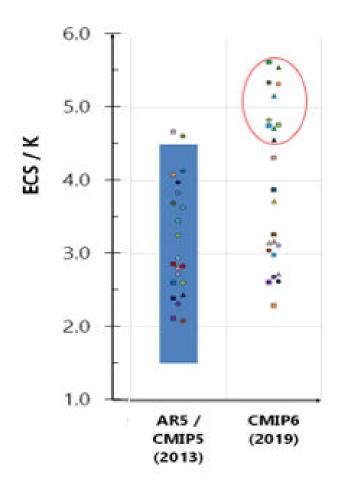
USMILE

Climate models are improving, yet systematic biases remain

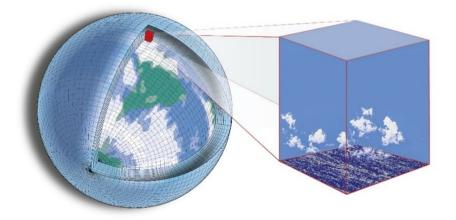


Precipitation bias (1995–2014) to **Global Precipitation Climatology Project (GPCP)**

Climate Sensitivity



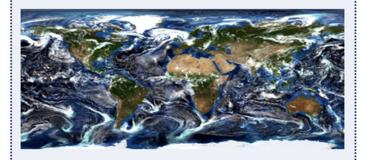
Problem: subgrid scale parametrizations



~50-150 km

... our approach

2. High-resolution cloud resolving models

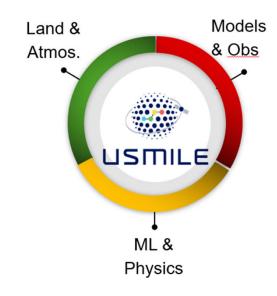




3. Progress in machine learning

Improved Climate Projections and Understanding

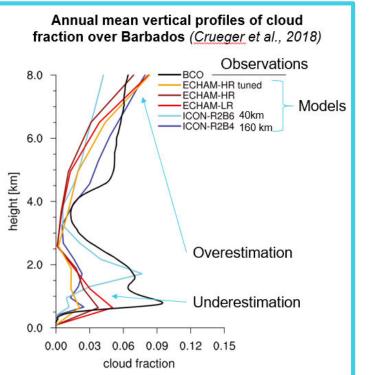
Coupled hybrid model (ICON-ML-ESM)



Feedforward NN for Cloud cover parametrization in ICON

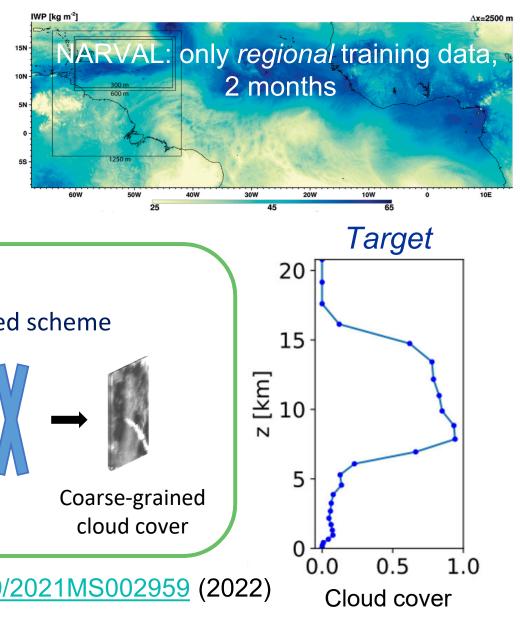
Estimated as a diagnostic (Sundqvist et al., 1989)

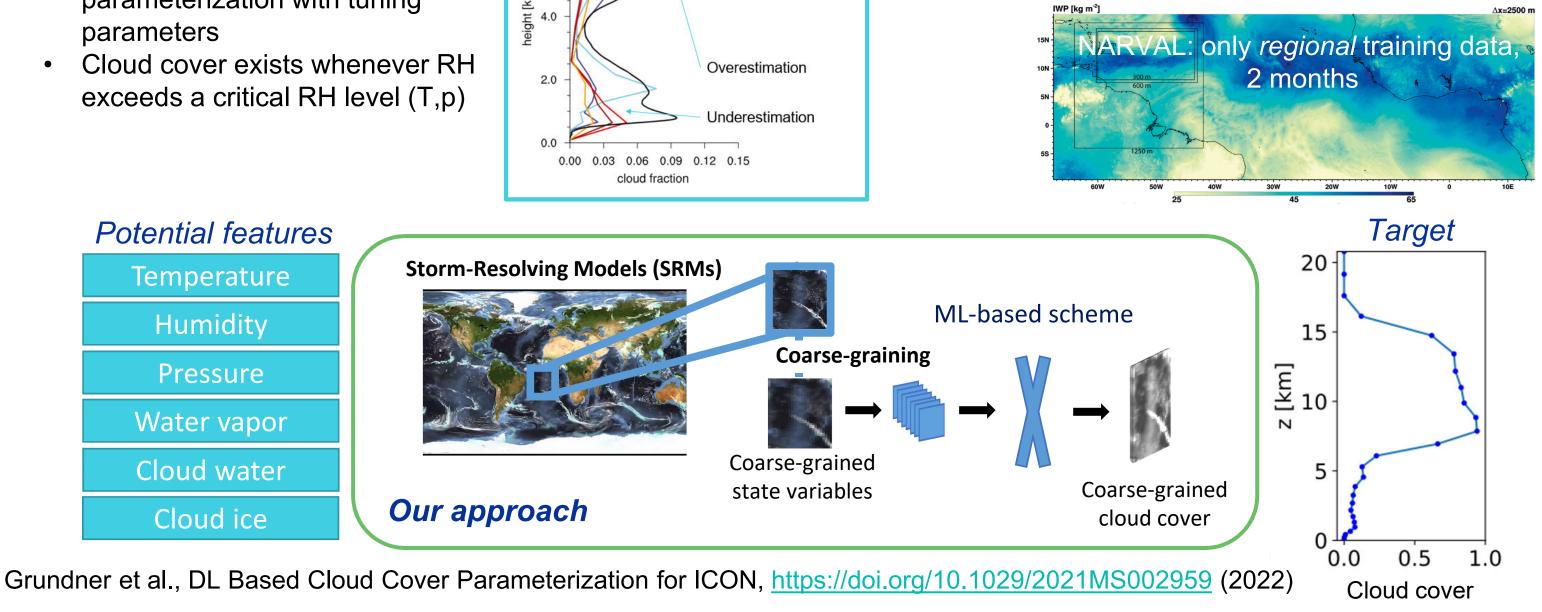
- Based on relative humidity (RH)
- And a semi-empirical parameterization with tuning parameters
- Cloud cover exists whenever RH • exceeds a critical RH level (T,p)



ICON Storm Resolving Model Simulations NARVAL, QUBICC, DYAMOND (~2-5 km)

- Explicit treatment of (deep) convection

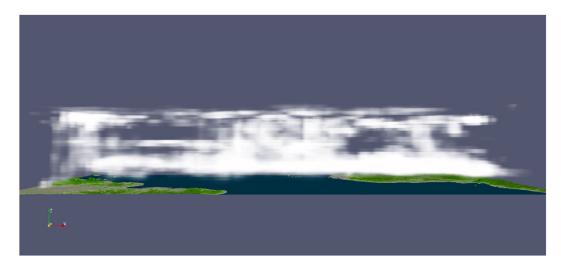


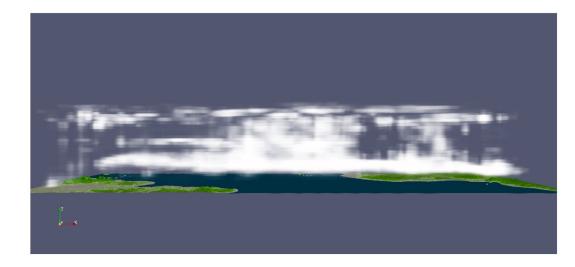


Improved representation of clouds & convection (Stevens et al. 2020, Hohenegger et al. 2020)

Neighborhood-based NN clearly outperforms Sundqvist

- **Neighborhood-based NN performs best**
 - R2-values generally well above 0.8 below 15 km
 - Clearly outperforms the Sundqvist scheme currently used in **ICON**
- The neural networks accurately learn cloud cover from regional and global storm-resolving model simulations
- **Generalization Tests:**
 - Globally trained NNs can reproduce sub-grid scale cloud cover of the regional storm resolving model simulation.
 - However, NNs trained on NARVAL region have problems



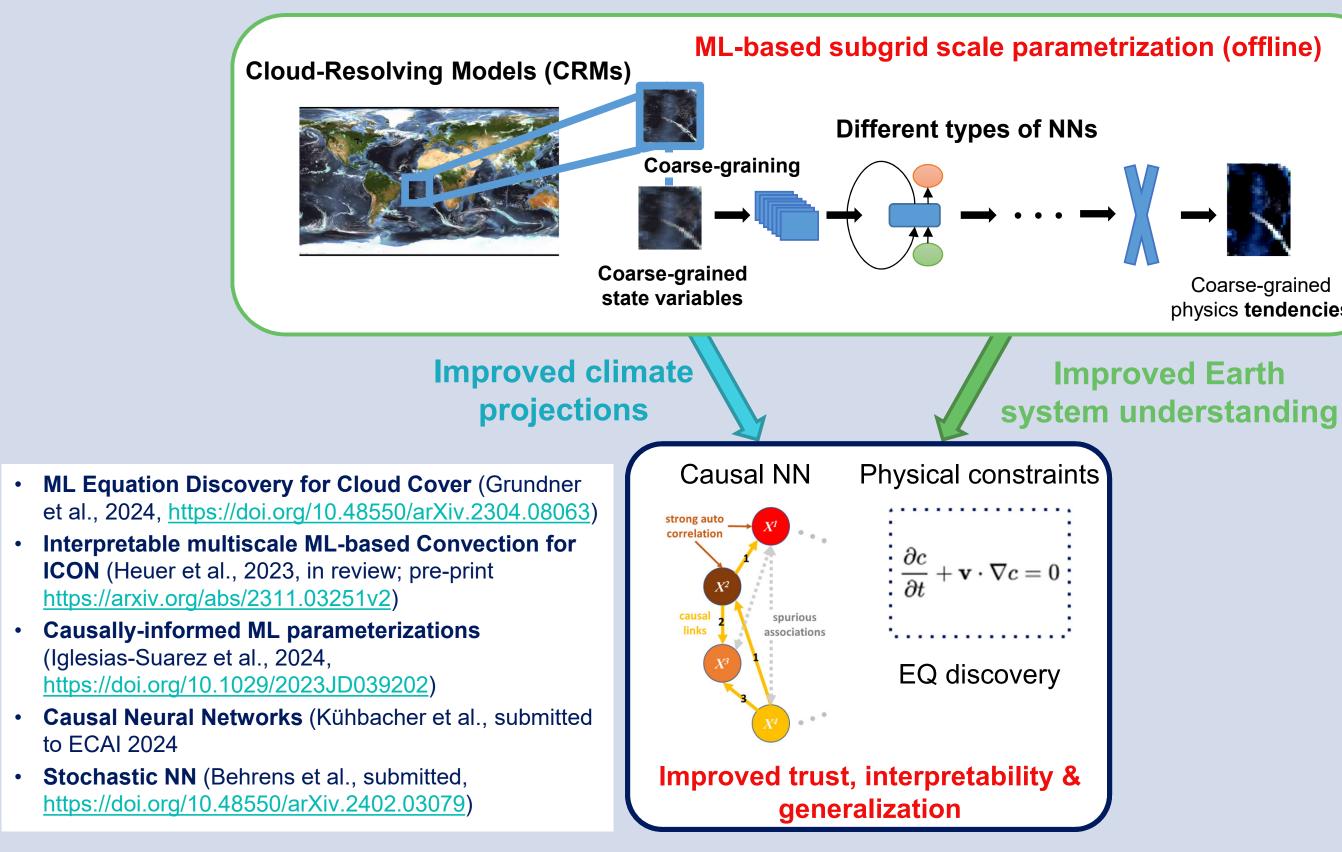


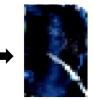
Grundner et al., DL Based Cloud Cover Parameterization for ICON, https://doi.org/10.1029/2021MS002959 (2022)

Reference (Coarse-grained)

ML simulation

 $R_l^2 = 1 - \frac{mse_l}{var_l}$





Coarse-grained physics tendencies

Data-Driven Equation Discovery of a Cloud Cover Parameterization

- Novel highly accurate, physically consistent, ٠ interpretable data-driven equation for cloud cover
- Both NNs and EQ run stable in online ICON simulations ullet

Jointly minimizing error & complexity in a well-defined plane

 $I_2(\partial_z \text{RH}) \stackrel{\text{def}}{=} a_6^3 \left(\partial_z \text{RH} + \frac{3a_7}{2} \right) \left(\partial_z \text{RH} \right)^2$

$R^2 > 0.95$ $R^2 > 0.9$ 10⁵ $\{p_s\}\{\partial_z T\}\{\partial_{zz} RH\}$ 10⁴ $\{q_c\}$ $\{q_i\}$ {RH} parameters Pareto frontier {azzp 10^{3} NNs $\{\partial_z p\}_{\{\partial_z RH\}}$ SFS NNs Number of p $\{T\}$ SFS Linear fits SFS Polynomials simpler **PySR** Sundqvist 10^{1} **GPGOMEA** Teixeira Xu-Randall 10^{2} 10³ MSE on validation set

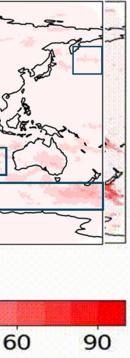
1500m, 11-20 August 2016 typical regions for marine stratocumulus clouds -60-3030 60 0 .90

More accurate

Grundner et al., JAMES (2024)

$f(RH, T, \partial_z RH, q_c, q_i) = I_1(RH, T) + I_2(\partial_z RH) + I_3(q_c, q_i),$

Boxes from Muhlbauer et al., 2014



Physical Constraints PC₁: $C(X) \in [0, 100]\%$ PC₂: $(q_c, q_i) = 0 \Rightarrow \mathcal{C}(X) = 0$ PC₃: $\partial \mathcal{C}(X) / \partial \mathrm{RH} \geq 0$ PC₄: $\partial \mathcal{C}(X) / \partial q_c \geq 0$ PC₅: $\partial \mathcal{C}(X) / \partial q_i \geq 0$ PC₆: $\partial \mathcal{C}(X) / \partial T \leq 0$ PC₇: $\mathcal{C}(X)$ is a smooth function

C: cloud cover **RH: Relative Humidity** qc: cloud water gi: cloud ice

Convection: Model Explainability - SHAP Values

Interpretable multiscale ML-based Convection for ICON

- We used **SH**apley **A**dditive ex**P**lanations for best found architecture: U-Net
- $shap(x = x_0, y)_{X_b}$ indicates change from average prediction in y for background data X_b when $x = x_0$
- U-Net focuses mainly on the precipitating tracer species for rain and snow, gr and gs, so learns non-causal relations

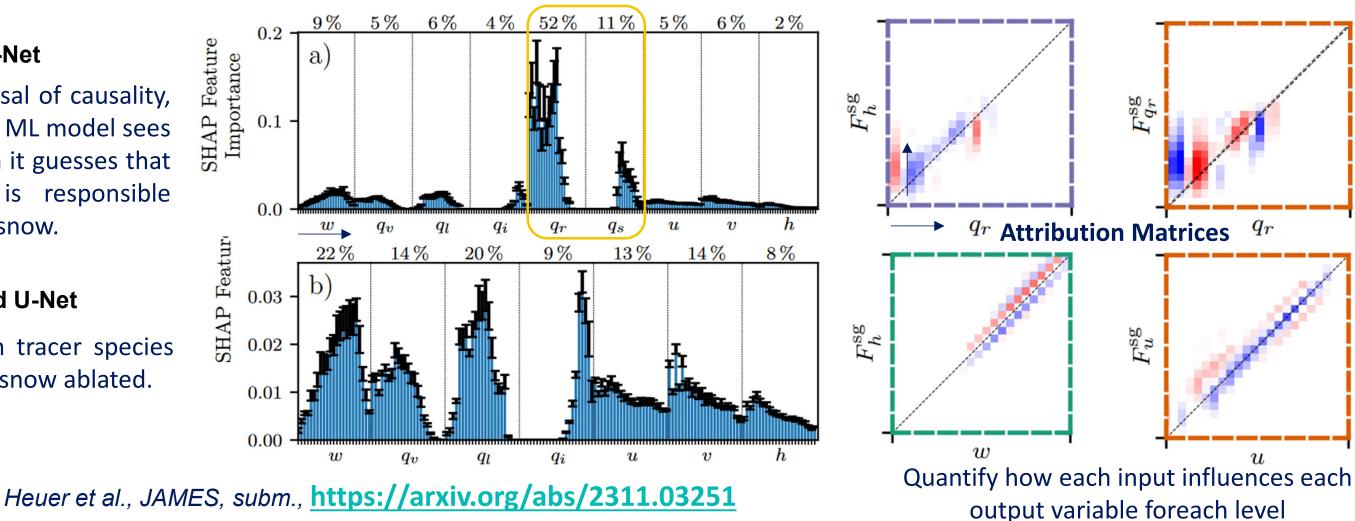
Ablated U-NET

- processes
- compared to U-NET

Learns reversal of causality, so when the ML model sees precipitation it guesses that convection is responsible for rain and snow.

Ablated U-Net

Precipitation tracer species for rain and snow ablated.

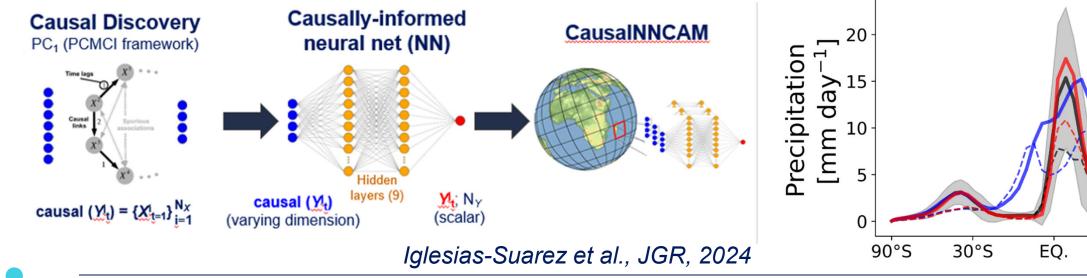


Excludes precipitating tracer species. learned relations connected to physical

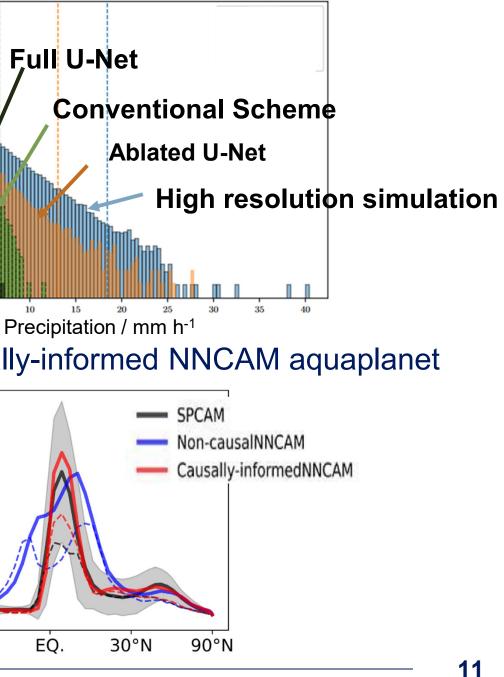
Improves online ICON simulations

Online: ML-based Climate Models Reduce Systematic Errors

Causally-informed Neural network: Improved simulation of the ITCZ in causally-informed NNCAM aquaplanet



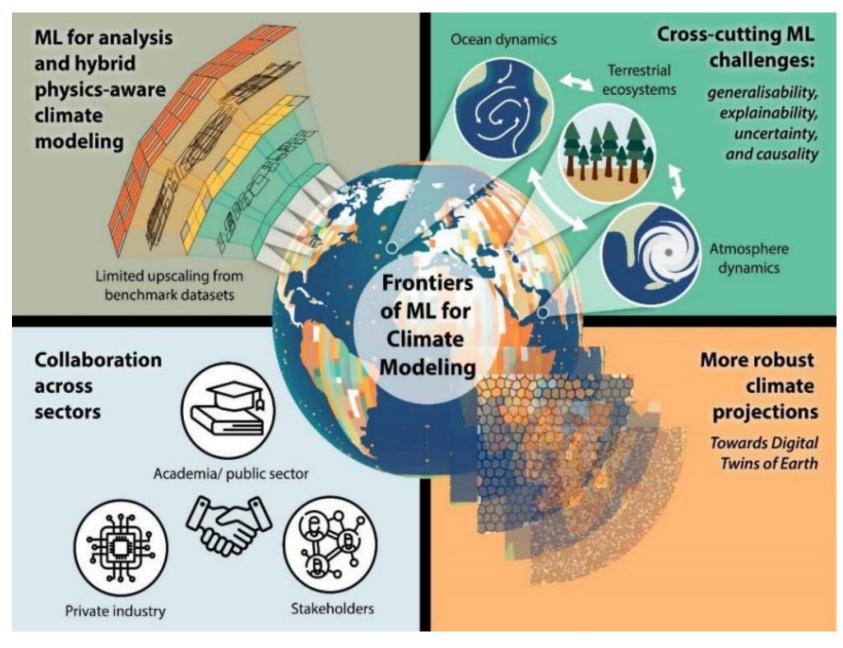
ML-based convection parmetrizations Ablated UNET



USMILE

Utilizing this potential requires addressing key ML challenges

Kühbacher, B., F. Iglesias-Suarez, N. Kilbertus & V. Eyring, Towards Physically Consistent Deep Learning For Climate Model Parameterizations, ECAI, submitted, https://arxiv.org/abs/2406.03920



Physical Consistency, Stability, Generalization Include physical constraints or other approaches for

• stable simulations

Uncertainty Quantification

• representation of the Earth system

eXplainable Artificial Intelligence

Assisting scientists to determine whether the ML

Causal Inference

are non-stationary;

Collaboration across sectors: Academia (ML and climate scientists), **Private sector & Stakeholders**

Eyring, V., W. Collins et al., P. Gentine, Nature Climate Change, Perspective, accepted, 2024

Stochastic (aka statistical) uncertainty is also present due to noise in the data used for training, and the choice of predictive variables being an incomplete

approach is obtaining the right answers for the right

E.g., Data is generated from a causally stationary process when in practice many real-world processes



•

•

•

•

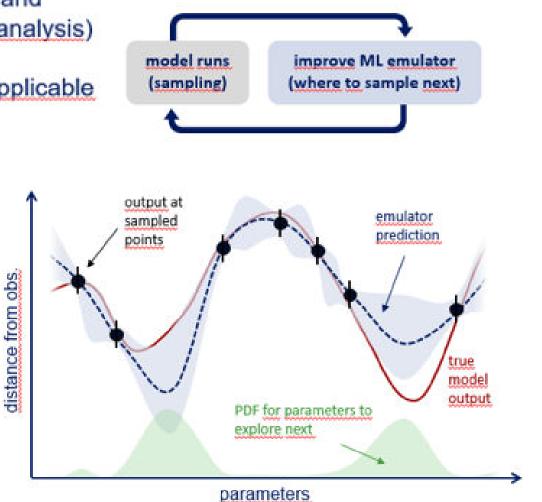
•

ML-based Automatic Tuning Framework for ICON

- Preliminary step: choose metrics to tune for and identify parameters to tune (e.g., sensitivity analysis)
- Iterative optimization: Bayesian scheme applicable to costly ,black-box' functions
- Perturbed parameter sensemble (PPE): N model runs for randomly sampled parameter
- 2. Fit ML model (emulator) to PPE
- Generate very large PPE with emulator
- Shrink parameter space (history matching)

$$IM(\boldsymbol{\theta}) = \sqrt{\frac{(y_{emul}(\boldsymbol{\theta}) - y_{obs})^2}{\sigma_{emul}^2(\boldsymbol{\theta}) + \sigma_{obs}^2}} < \rho$$

Reiterate from PPE generation 5.



History Matching (HM)

- criterion.

Pastori, Bonnet et al., in preparation, 2024 (ICON Atmosphere)

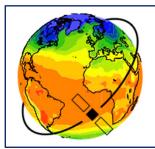
Bouman et al., in preparation, 2024 in collaboration with Katie Dagon and Linnia Hawkins (ICON Land-atm coupling)

Balance between exploration of the parameter space and exploitation of the already explored, and potentially promising, parameter regions.

This exploration-exploitation tradeoff is achieved by shrinking the parameter space according to an implausibility

Only parameters which the emulator finds promising (i.e, $(y_{emul}(\theta) - y_{obs})^2$ is small), or where the emulator is very uncertain (i.e., $\sigma_{emul}^2(\theta)$ is large), will be kept in the next iteration of the protocol.

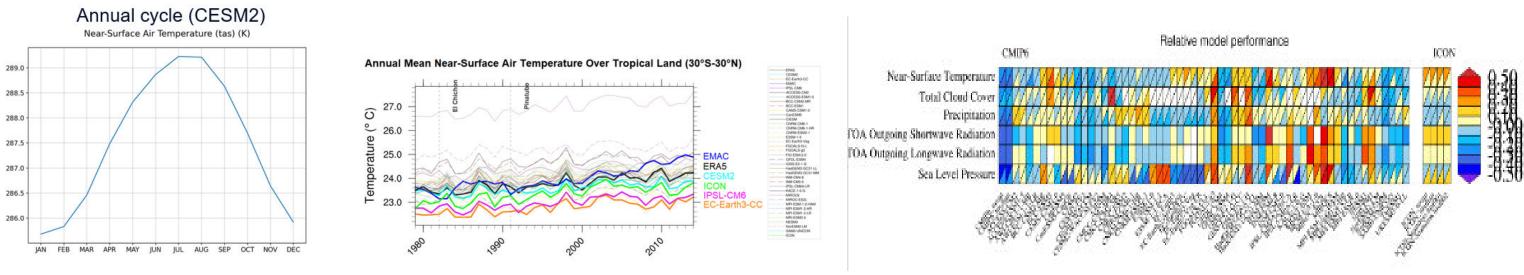
Evaluation of Native Model Output with ESMValTool



Earth System Model Evaluation Tool

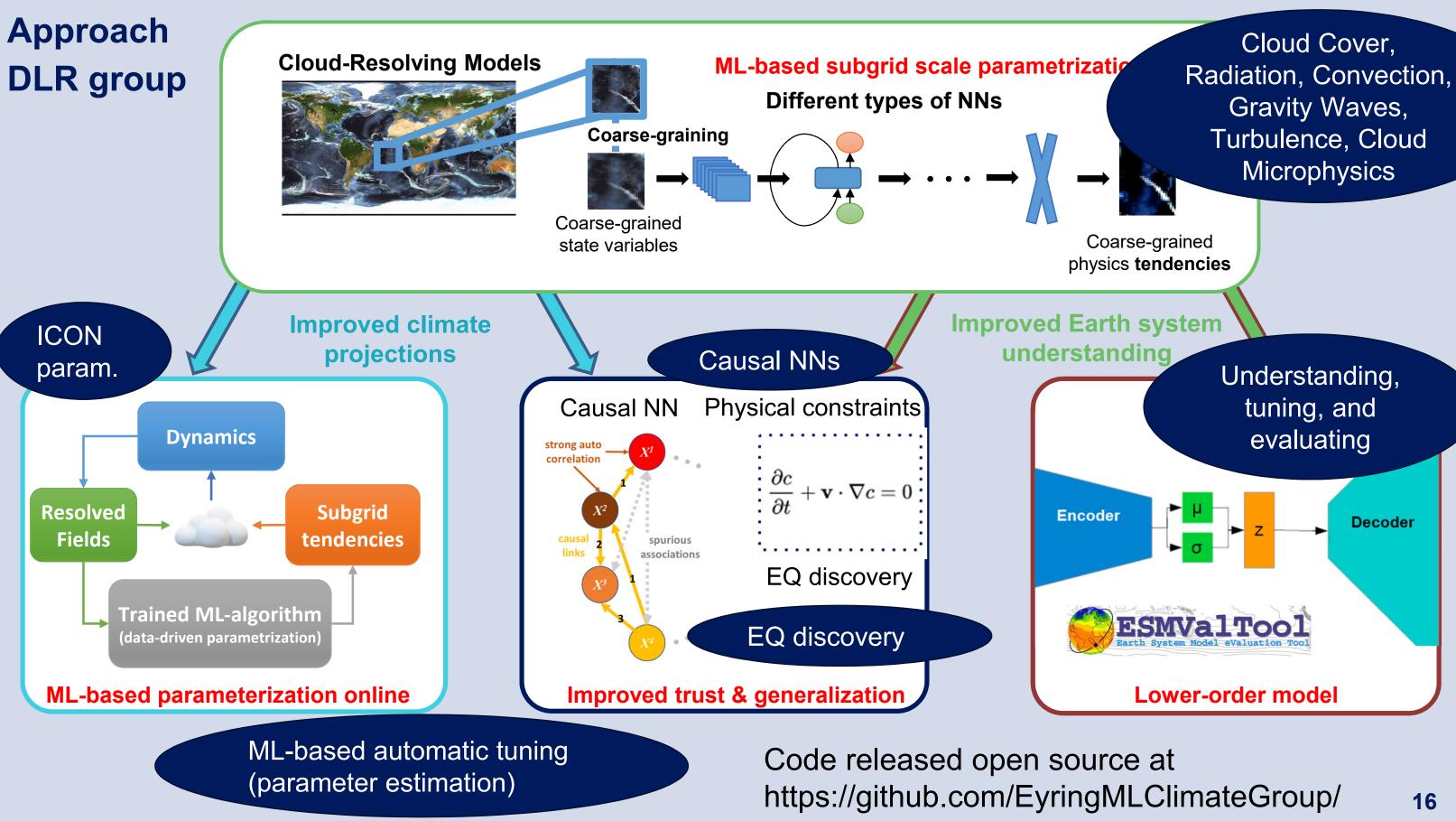
"Community-developed open-source diagnostic and performance metrics tool for routine evaluation of Earth system models."

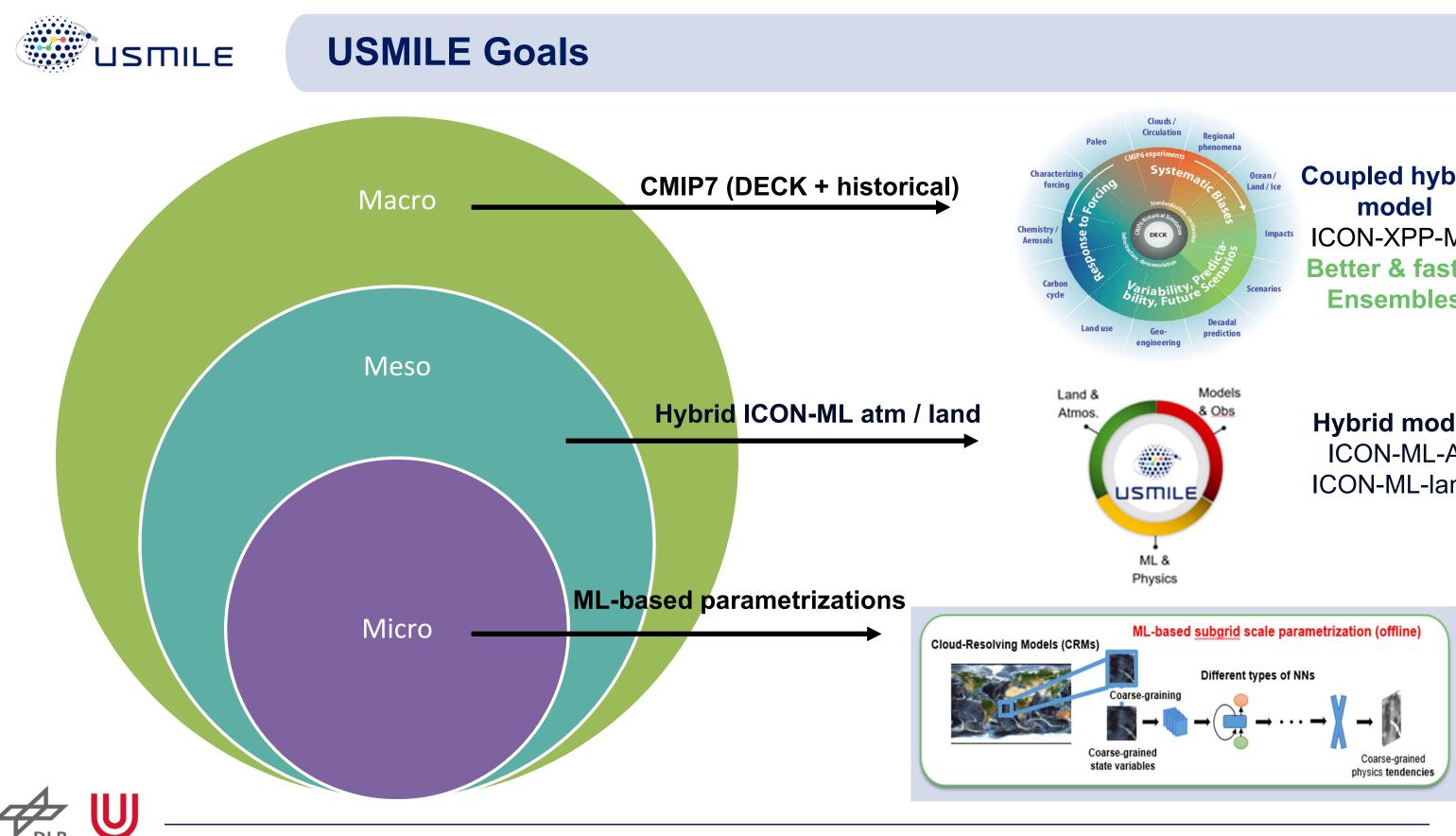
- Reading of native model output, currently: CESM2, EC-Earth3, EMAC, ICON, and IPSL-CM6.
- No postprocessing (e.g., CMORization) necessary
- This output can be processed like any other CMIP model within ESMValTool
- Monitoring of simulation available now, but also allows benchmarking of simulations to other CMIP models and observations before submission to the ESGF (or other CMIP archives)



Single model analysis

Multi model analysis Schlund et al. (incl. B. Medeiros), GMD, 2023



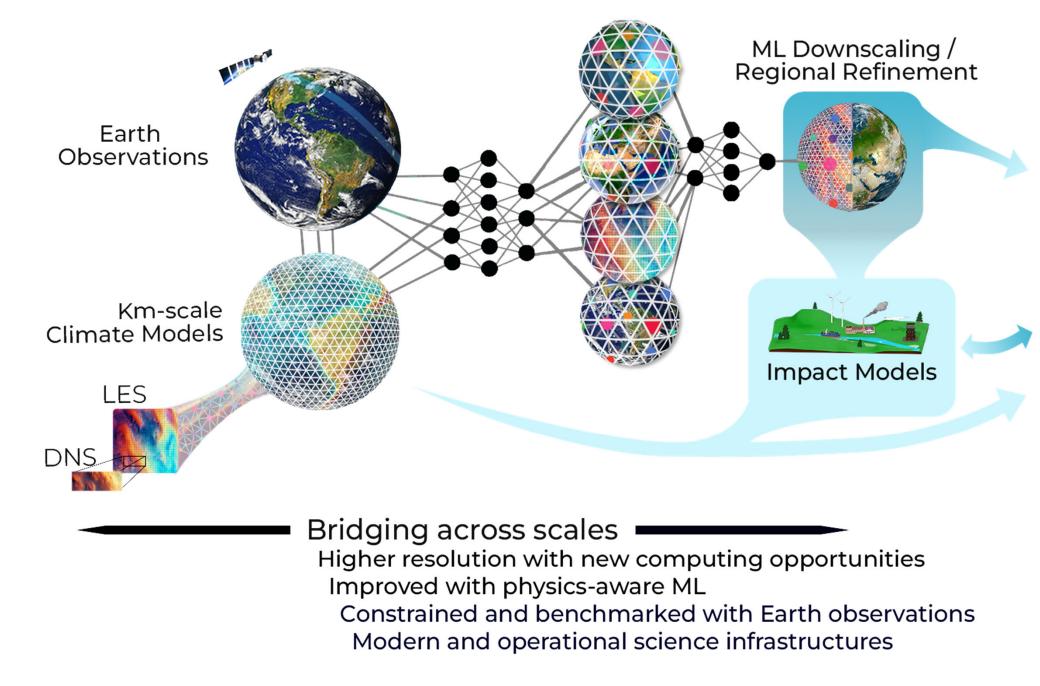


Coupled hybrid ICON-XPP-ML Better & faster Ensembles

Hybrid model **ICON-ML-A ICON-ML-land**

Al-empowered Next-generation Multiscale Climate Modeling for Mitigation and Adaptation

Hybrid (physics+ML) ESMs



ISMILE

Eyring, V., P. Gentine, G. Camps-Valls, D. M. Lawrence, M. Reichstein, Nature Geoscience, accepted, 2024

Reduced systematic errors & more accurate climate projections

Actionable **Climate Science**

JSMILE

Summary & Vision

CMIP

- Provides scientific understanding and an important source for IPCC Assessment Reports since decades.
- However, large errors and climate projection uncertainties remain and the slow pace of updated climate information through the CMIP cycles deters policy decisions.

Development of hybrid (physics + ML) Earth System Models

- ML trained against short km-scale climate model simulations has been successfully substituted for conventional parameterizations (e.g. deep convection, cloud cover), thereby enhancing the fidelity of the host ESM.
- Through **innovative ML methods**, ML is no longer a black box, rather can help understanding physical processes _

Challenges

- **ML Challenges:** physical constraints and generalization, uncertainty quantification, XAI, causality -
- Other Barriers: operationalization of policy-relevant simulations and annual updates of forcing datasets as well as the broad an inclusive accessibility of climate model data.

Bridging across scales and complexity

- This approach complements **km-scale modeling** activities with **models that include important Earth system** processes and feedbacks, yet are still fast enough to deliver large ensembles for better quantification of internal variability and extreme events.
- Could form an integral part of international activities such as CMIP and Digital Twin Initiatives.
- Together, this can form a step change in the accuracy and utility of climate projections, meeting the urgent mitigation and adaptation needs of society and ecosystems also on the regional scale in a rapidly changing world.

Eyring, V., P. Gentine, G. Camps-Valls, D. M. Lawrence, M. Reichstein, Nature Geoscience, accepted, 2024 19

Contact: Project information: Code availability:

veronika.eyring@dlr.de https://www.usmile-erc.eu/ https://github.com/EyringMLClimateGroup/ https://github.com/ESMValGroup

