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Motivation

Part 1: ML-based Parametrizations for Cloud Cover
— Feedforward NN in “real world” settings (ICON-A)

Part 2: Improved Trust in ML Models and Generalization

— Equation Discovery & Physical constraints (ICON-A)

— Causal Deep Learning & Stochastic Neural Nets (SPCAM/CESM)
— Reduction of Systematic Errors in Hybrid ESMs promising

— ML Challenges remain (stability, generalization)

Part 3: ML-based Model Tuning and Evaluation

Summary & Vision

Climate Change 2021
The Physical Science Basis

I 1
1850 1900 1250 2000 2020

ML-based subgrid scale parametrization (offline)

®ESMValTool

\ .é; Earth System Model eValuation Tool

t Different types of NNs
Coarse-graining a 1
— ‘ —) @ —) s o ¢+ ) x — ﬂ
Coarse-grained - )
- Coarse-grained
\‘ state variables physics tendenci ef/

# 'U' ICON: Icosahedral Non-Hydrostatic (MPI-M, Giorgetta et al. 2018); SPCAM: Superparameterized Community Atmosphere Model
DLR
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The World Climate Research Programme’s
Coupled Model Intercomparison Project

CMIP @ CMIP6 Provided Scientific Understanding & Fundamental Source for IPCC AR6 erc

World Climate Research Programme’s (WCRP) Coupled Model Intercomparison Project (CMIP)

Near-surface air temperature

1.6 -
Clouds/ S o mmogescnetul It is unequivocal that
paill Circulation ::gional % D.B-: == Observations . human inﬂuence haS
_ phenomena g
QWp6experimengs 2 o - warmed the atmosphere,
Characterizing 4 o, - ocean and land.
forcing Land / Ice =Y
_____ DI: I;ED 1900 1950 2000
chemistry/ DAY % - Eyring et al., IPCC WGI AR6 Ch3, 2021
Aerosols U R TN AW
c:;z:n Jsarios Warming
relative to 8
pre-industrial 7
landecl Decadal - 6
- Geo- prediction 4 ;
engineering - A Y E
Eyring et al., Overview CMIP6, GMD, 2016 ! n

2.7°C 3.9% CCBY 4.0:
DKRZ / DLR

by 2100 by 2100 by 2100

based on Lee et al., IPCC WGI AR6 Ch4, 2021
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Skill of models at reproducing observations
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Better model i g
performance il
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07—
4 CMIP6
41 CMIPS
Poorer model
perfarmance -
06~
Near-Surface Precipitation Sea Level
Air Temperature Pressure

®ESMValTool

Earth System Model eValuation Tool

Individual models

Precipitation bias (1995-2014) to
Global Precipitation Climatology Project (GPCP)

CMIP6 bias
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Climate models are improving, yet systematic biases remain

Climate Sensitivity
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Eyring et al., IPCC AR6 WGI, Chapter 3: “Human influence on the climate system”, 2021
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... our approach

Problem: subgrid scale parametrizations

~50-150 km

1. Massive data from Earth
observation

2. High-resolution
cloud resolving models

3. Progress in machine
learning

Science:

Improved
Climate Projections
and Understanding

Coupled hybrid model
(ICON-ML-ESM)

Lapd & Models
& Obs

Atmos.

!
ML &

Physics
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e usmiLe Feedforward NN for Cloud cover parametrization in ICON

ol gediualpoieoioad ICON Storm Resolving Model Simulations
EStlmate.d as a dlagnOStlc i - —— Observations NARVAL, QUBICC, DYAMOND (~2'5 km)
(Sundqyvist et al., 1989) 7 A= . - Explicit treatment of (deep) convection

~ ———ICON-R2B6 40km ‘
| ——ICON-R2B4 160 km__

« Based on relative humidity (RH)
 And a semi-empirical
parameterization with tuning

- Improved representation of clouds & convection
(Stevens et al. 2020, Hohenegger et al. 2020)

IWP [kg m?]

6.0

4.0 - - A:x=2500m

height [km]

parameters ﬂ" : .
_ . RRWAL: only regional training datas®
 Cloud cover exists whenever RH 2o I\ ' Overestimation P ezl y2 mgonthS ‘ 9 ;
exceeds a critical RH level (T,p) s~ e e . csn
~— Underestimation T LR T 8l
0.0 T T T T 1
0.00 0.03 0.06 0.09 0.12 0.15
cloud fraction
Potential features Target
/ Storm-Resolvin dels (SRMs) —— \ 20
o e T e | ML-based scheme
Humidity - 151
Coarse-graining | .
: BR-%-] - -
Cloud water Coarse-grained ' 3
state variables Coarse-grained
_Our approach iy

0- .
00 05 1.0

Grundner et al., DL Based Cloud Cover Parameterization for ICON, hitps://doi.org/10.1029/2021MS002959 (2022) Cloud cover
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e UsmILE Neighborhood-based NN clearly outperforms Sundqvist

Reference (Coarse-grained)

Conclusion:
* Neighborhood-based NN performs best

— R2-values generally well above 0.8 below 15 km

— Clearly outperforms the Sundqvist scheme currently used in
ICON

* The neural networks accurately learn cloud cover from
regional and global storm-resolving model simulations

ML simulation

e Generalization Tests:

— Globally trained NNs can reproduce sub-grid scale cloud cover
of the regional storm resolving model simulation.

— However, NNs trained on NARVAL region have problems

mse;

RF=1-

var;

# 'U' Grundner et al., DL Based Cloud Cover Parameterization for ICON, htips://doi.org/10.1029/2021MS002959 (2022)
DLR




ML-based subgrid scale parametrization (offline) \
Cloud-Resolving Models (CRMs)

Different types of NNs

Cc:arse-graining ‘
B-e--f-R

Coarse-grained

\ state variables Coarse-grained /
physics tendencies
Improved climate Improved Earth
projections system understanding

ML Equation Discovery for Cloud Cover (Grundner Causal NN Physical constraints

et al., 2024, https://doi.org/10.48550/arXiv.2304.08063) N——

correlation

Interpretable multiscale ML-based Convection for
ICON (Heuer et al., 2023, in review; pre-print
https://arxiv.org/abs/2311.03251v2) |

Causally-informed ML parameterizations associations
(Iglesias-Suarez et al., 2024, EQ di
https://doi.org/10.1029/2023JD039202) Q discovery

Causal Neural Networks (Kuhbacher et al., submitted
to ECAI 2024

Stochastic NN (Behrens et al., submitted, Improved trust, interpretability &
https://doi.org/10.48550/arXiv.2402.03079) generalization




S UsmiLe Data-Driven Equation Discovery of a Cloud Cover Parameterization

* Novel highly accurate, physically consistent, f(RH,T,0,RH, q.,¢;) = [,(RH,T) + I,(8,RH) + I5(qe, ;)
interpretable data-driven equation for cloud cover

e Both NNs and EQ run stable in online ICON simulations I(0-RH) = def ;3 (a RH + 307) (9-RH)*

Jointly minimizing error & complexity in a well-defined plane

105 1 R?>0.95 R2>0.9
| 1500m, 11-20 August 2016
{ps}{9:T}{a,:RH} Boxes from Muhlbauer et al., 2014
4 | it
% 10 (RH} __| | Physical Constraints
g | 1 |PCy: €(X) € [0,100]%
£ —— Pareto frontier
g 103 - NNs PCs: (¢, q:) =0=C(X) =0
o SFS NNs PCsz: 9C(X)/ORH 2> 0
° * SFS Linear fits PCy4: 0C(X)/0q. > 0
3 102 . SFS Polynomials Y i%q [PCs: 0C(X)/0q; > 0
§ { PCg: 9C(X)/0T <0
%- * | PCy;: C(X) is a smooth function
S | 10! | i
) GPGOMEA | o . : 3 —  C: cloud cover
- Xu-Randall ¢ Telx?ra typlcal reglons for marine RH: Relative Humldlty
v 3102 ' TE qc: cloud water
. . i: cloud ice
< MSE on validation set 30 q

More accurate

4#7 Grundner et al., JAMES (2024)
DLR




S UsmiLe Convection: Model Explainability - SHAP Values

Interpretable multiscale ML-based Convection for ICON Ablated U-NET
.« We used SHapley Additive exPlanations for best found architecture: U-Net * Excludes precipitating tracer species.
- shap(x = x,y)x, indicates change from average prediction in y for ) :aes)r:eesds;zlatlons connected to physical
background data Xj, when x = xo « Improves online ICON simulations
« U-Net focuses mainly on the precipitating tracer species for rain and snow, compared to U-NET
gr and gs, so learns non-causal relations
o 02 2% 5% 6% 4% (5% %) 5% 6% 2% T—————=7 = ——— v
Full U-Net = g a) I : : I
® S
Learns reversal of causality, 3 £ o _ | | 0 | |
so when the ML model sees & é 0-1- ol ; | o #H |
precipitation it guesses that &~ __ I TI, I H! I
Conve.Ction IS responSI ble 00 g 11| e ... all | '7:. m —F —————— 4 #ﬂ ______ 4
for rain and snow. l — W, & @ % \ 9 9 ) v v b — > 4r Attribution Matrices 9~
3 22% 14% 20% 9% 13% 14% 8% —————— = T————— 1
£ 0034 D) | 7| | |
Ablated U-Net o - [ 2 | s |
e ‘.'
Precipitation t i = 0024 A ; 3| =l '
reCIF)I ation tracer species 0n oo il : | "i S | ‘ | €3 I ,‘.f' |
for rain and snow ablated. L& ol ] | e | | | |
111191 Vel
oo SO A0, et e — —— ——— - i E ]
w Qv qi qi U Vv h w U

Quantify how each input influences each
output variable foreach level

#7 Heuer et al., JAMES, subm., https://arxiv.org/abs/2311.03251

DLR



¥ usmiLe Online: ML-based Climate Models Reduce Systematic Errors  erc

ML-based convection parmetrizations Ablated UNET
=> [mproved extreme precipitation (ICON-A)

ML-based stochastic parametrizations
=> Improved diurnal cycle of precipitation (CESM)

(d) ZM-CESM

Heuer et al., -
JAMES, subm. - Full U-Net
I gtﬁ) %gggﬁw‘om/ab‘c’/z -~ / Conventional Scheme

10-% o

Ablated U-Net

/ High resolution simulation

Behrens et al.,

e L 1 JAMES, subm.
https://arxiv.org/abs/2402.03079

Hour of Daily Precipitation Peak Local Solar Time

1075 o

10 L

0 5 10 15 20 25 30 35 40

Precipitation / mm h-"
Causally-informed Neural network: Improved simulation of the ITCZ in causally-informed NNCAM aquaplanet

Causal Discovery Causally-informed - e SPCAM
PC, (PCMCI framework) neural net (NN) c o we Non-causalNNCAM
s o ¢ ' A -8 '% 151 we= Causally-informedNNCAM
©
[ ] X @ (5]
® .| ® = 0
: =t : - : S el g 28 ¢ 104
AN S O E
x Y‘:'l'iidd(m"} E - 51
causal (Y layers (9) w’ N
causal (V) = {X'-1} :i)fl (varying dirn(é}::,ion) (S(‘Ea|a‘ff) 0-
Iglesias-Suarez et al., JGR, 2024 90°S  30°S EQ. 30°N  90°N

o0 11
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HFUsmiLe Utilizing this potential requires addressing key ML challenges  €rc

---------

Kihbacher, B., F. Iglesias-Suarez, N. Kilbertus & V. Eyring, Towards Physically Consistent Deep Learning For
Climate Model Parameterizations, ECAI, submitted, https://arxiv.orq/abs/2406.03920

ML for analysis

CrosscuttingML = phygsjcal Consistency, Stability, Generalization
and hybrid

challenges: _ :
ecosystems  generalisability, * Include physical constraints or other approaches for

explainability, stable simulations

andeausalty . Uncertainty Quantification

» Stochastic (aka statistical) uncertainty is also present
due to noise in the data used for training, and the
choice of predictive variables being an incomplete
representation of the Earth system

eXplainable Artificial Intelligence

Ep e  Assisting scientists to determine whether the ML
projections approach is obtaining the right answers for the right

Towards Digital Causal Inference

Twins of Earth _ _
« E.g., Data is generated from a causally stationary
process when in practice many real-world processes
are non-stationary;

climate

Limited upscaling from
benchmark datasets

Climate

of ML for l e
. Modeling . |

Collaboration More robust

across
sectors

Academia/ public sector

@%@ |

Private industry Stakeholders

Eyring, V., W. Collins et al., P. Gentine, Nature Climate Change, Perspective, accepted, 2024




Different types of NNs

Coarse-gralnmg
B-o-(--)- ﬂ

Coarse-grained
o state variables o

Coarse-grained
physics tendencies

Improved Earth system
Learning convection with a VED (Behrens et al., 2022, understanding
https://doi.org/10.1029/2022MS003130)

Understanding modes of climate variability with causality (Karmouche et al.,
2022, https://doi.org/10.5194/esd-14-309-2023)

Changing effects of external forcing on Atlantic—Pacific interactions
(Karmouche et al., 2024, htips://esd.copernicus.org/articles/15/689/2024/)

Understanding Arctic teleconnections with causality (Galytska et al., 2022,
https://doi.org/10.1002/essoar.10512569.1)

Constraining uncertainty in multi-model climate projections using feature
maps (Schlund et al., 2022, https://doi.org/10.1029/2019JG005619)

Benchmarking: Development of ESMValTool (Schlund et al., 2023,
https://doi.org/10.5194/gmd-16-315-2023)

£ ESMValTool

7 N qu Earth System Model eValuation Tool

ML-based model
tuning and Lower-order model

evaluation



= |terative optimization: Bayesian scheme applicable

¥ USMILE

Preliminary step: choose mefrics to tune for and
identify parameters to tune (e.q., sensitivity analysis)

to costly ,black-box’ functions

Perturbed parameter sensemble (PPE): N
model runs for randomly sampled parameter

Fit ML model (emulator) to PPE

. Generate very large PPE with emulator

. Shrink parameter space (historv matching)

| 5
| (Vemul(@) = Vous)®

IM(8) = : .
~.,‘| IL"'rflituullmr-’ + ‘:Frfhs.

Reiterate from PPE generation

<p

distance from obs.

0

¥

medel runs
[sampling)

emulator
prediction

L 3

parameters

Pastori, Bonnet et al., in preparation, 2024 (ICON Atmosphere)

ML-based Automatic Tuning Framework for ICON

History Matching (HM)

Balance between exploration of the
parameter space and exploitation of the
already explored, and potentially
promising, parameter regions.

This exploration-exploitation tradeoff is
achieved by shrinking the parameter
space according to an implausibility
criterion.

Only parameters which the emulator finds

promising (i.e, (Yemu1(8) — Yobs)” is
small), or where the emulator is very
uncertain (i.e., 6.5,,,(0) is large), will be
kept in the next iteration of the protocol.

14

é Bouman et al., in preparation, 2024 in collaboration with Katie Dagon and Linnia Hawkins (ICON Land-atm coupling)

DLR



Evaluation of Native Model Output with ESMValTool

Earth System Model Evaluation Tool

“Community-developed open-source diagnostic and performance

metrics tool for routine evaluation of Earth system models.”

- Reading of native model output, currently: CESM2, EC-Earth3, EMAC, ICON, and IPSL-CM6.

- No postprocessing (e.g., CMORIization) necessary
- This output can be processed like any other CMIP model within ESMValTool

- Monitoring of simulation available now, but also allows benchmarking of simulations to other
CMIP models and observations before submission to the ESGF (or other CMIP archives)

Annual cycle (CESM2)

Near-Surface Air Temperature (tas) (K)

Ralafiva medel pedarmancs

J Annual Mean Near-Surface Air Temperature Over Tropical Land (30°S-30°N) I"'.'ll"n. S : S
289.07 s
‘ ; : : o Wuar-Gurfave Temperanae [l - W L i L ] ¥l
s = Tou ol coves UV VIOV V7717 muummmurm T
5 v QT AT
_— © %07 3 1A Dtpaing Shortwave Redianon M Bl ihln

' 2 250 EMAC PO Ougaing Longwave Radirian I | i il “ | | l
A g."'_ 24.0 _ A _E.M_Sl Sea Level Pressor .-;,' '8 ! / " Y Il
2865 'E 23.0 _~ < IPSL-CME E ##fi' F‘;ﬂmjﬁff?;ﬁ%?;@?%?ﬁﬁzfgﬁ :";:":-:"_,il:- iﬁ;ﬂﬁ -\f:"': HJ,:'."-‘ 1-\_':-"\-:'\;'::;}:3.'-\.}\- ; %_.:'? T
286.0 : I = _"".\_-:-i_'-;.\__ _1'-&\ s & I.'LE__-"-::;I:E:_'E_:F'} "_‘;.'-.l:'n:"'::;-“,ll'\::--__:,l:l }T?bl' -C'\-,-_:.-g}'-l‘ﬁﬁf:'hx-" Py E’ ‘-?n"‘l

JAN  FEB  MAR  APR  MAY JUN  JUL  AUG  SEP  OCT NOW  DEC p?J%Q \@Q qt)@ 1-53\0 ':P E : ;35\? l’-l ¥ -::l:l-

Single model analysis

# U

Multi model analysis

Schlund et al. (incl. B. Medeiros), GMD, 2023




Approach
DLR group

Cloud Cover,

Radiation, Convection,
Different types of NNs Gravity Waves,

Coarse-graining Turbulence, Cloud
- -F N — Microphysics
\'-,
Coarse-grained _
state variables Coarse-grained

physics tendencies
x Causal NNs

ML-based subgrid scale parametrizatig

Improved climate
projections

Understanding,
Causal NN Physical constraints tuning, and
Y l strongauto 4dOWRN 4240092 . Tt ThThErERR evaluating
correlation .
% 4+v:-Ve=0

Decoder

2 spurious
associations

Lower-order model

ML-based parameterization online Improved trust & generalization

HILAPEEEE ELIDMENS Al Code released open source at
https://github.com/EyringMLClimateGroup/ 16

(parameter estimation)



"f.t,...ff"’usmn_e USMILE Goals

CMIP7 (DECK + historical)

ICON-ML atm / land

parametrizations

Clouds /
Circulation
Regional
Paleo : B e
rimen s

w8 SN, . Coupled hybrid
model
) = |CON-XPP-ML
RN ) Better & faster
e "f':'i‘f‘i':‘.‘fl‘_\' ™ Ensembles

Decadal
prediction

Chemistry /

Land use Geo?
engineering

Land &
Atmos.

Hybrid model
ICON-ML-A
|ICON-ML-land

ML &
Physics

Cloud-Resolving Models (CRMs)

ML-based subgrid scale parametrization (offline) \

Different types of NNs
Coarse-graining
m-e-3--]-
Coarse-grained
I Coarse-grained
state variables physics tendencies

# U
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e USMILE Al-empowered Next-generation Multiscale Climate Modeling for Mitigation and Adaptation

Hybrid (physics+ML) ESMs

;'AG%.VA\\ .
K:{#AA‘VQ“ ML Downscaling /
Vi Regional Refinement

Earth
Observations

Reduced
systematic errors &
more accurate
climate projections

AV VA
TAYAY, 01&. ‘L’ﬂm A‘m E U H
Km-scale josiiiemsiosas ABENON SRV
Climate Models s o TAVAYAVAY: »

PO RN TR
VAV A r"%! r&" "ﬁ'%j v"’f

Actionable

Impact Models X 5
P Climate Science

Bridging across scales m—
Higher resolution with new computing opportunities
Improved with physics-aware ML
Constrained and benchmarked with Earth observations
Modern and operational science infrastructures

%?R LU) Eyring, V., P. Gentine, G. Camps-Valls, D. M. Lawrence, M. Reichstein, Nature Geoscience, accepted, 2024 18



I_ISITIILE Summary & Vision
CMIP

- Provides scientific understanding and an important source for IPCC Assessment Reports since decades.
- However, large errors and climate projection uncertainties remain and the slow pace of updated climate
information through the CMIP cycles deters policy decisions.

Development of hybrid (physics + ML) Earth System Models

- ML trained against short km-scale climate model simulations has been successfully substituted for conventional

% parameterizations (e.g. deep convection, cloud cover), thereby enhancing the fidelity of the host ESM.
- Through innovative ML methods, ML is no longer a black box, rather can help understanding physical processes
e Challenges

- ML Challenges: physical constraints and generalization, uncertainty quantification, XAl, causality
- Other Barriers: operationalization of policy-relevant simulations and annual updates of forcing datasets as
well as the broad an inclusive accessibility of climate model data.

Br/dg/ng across scales and complexity

This approach complements km-scale modeling activities with models that include important Earth system
processes and feedbacks, yet are still fast enough to deliver large ensembles for better quantification of
internal variability and extreme events.
Could form an integral part of international activities such as CMIP and Digital Twin Initiatives.

- Together, this can form a step change in the accuracy and utility of climate projections, meeting the urgent
mitigation and adaptation needs of society and ecosystems also on the regional scale in a rapidly changing world.

Eyring, V., P. Gentine, G. Camps-Valls, D. M. Lawrence, M. Reichstein, Nature Geoscience, accepted, 2024 19
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Contact:
Project information:
Code availability:

veronika.eyring@dir.de
https://www.usmile-erc.eu/

https://github.com/EyringMLClimateGroup/
https://github.com/ESMValGroup
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