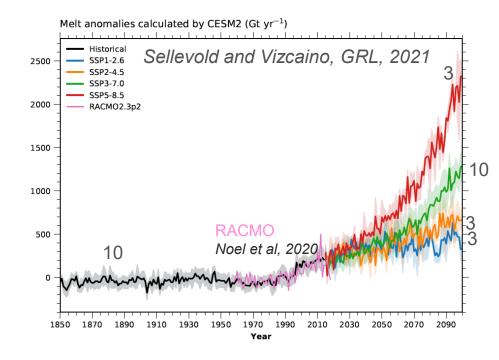
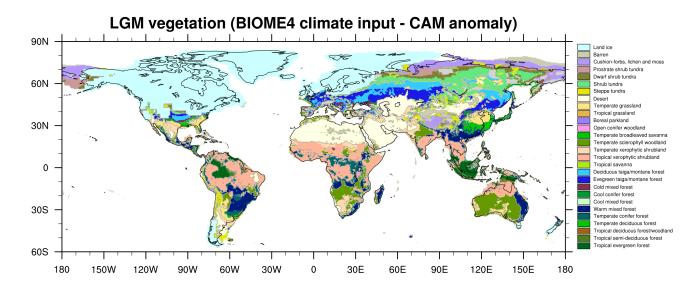
Simulation of LGM NH ice sheets climate and SMB with CESM2-CAM5

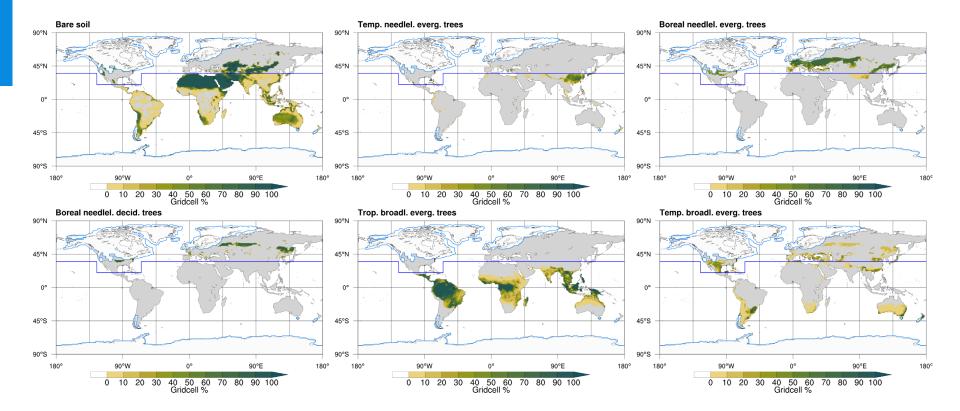

Sarah L. Bradley(1), Raymond Sellevold (2), Michele Petrini (3),
Miren Vizcaino(2), Sotiria Georgiou (3), Jiang Zhu (4),
Bette L. Otto-Bliesner (4) & Marcus Lofverstrom(5)
(1) Univ. of Sheffield, UK; (2) TU Delft, NL ; (3) NORCE, Norway;
(4) NCAR, USA, (5) Univ. of Arizona, USA

Delft

- CESM2 includes default melt and SMB calculation for all CMIP simulations
- CESM2-CISM2 provided first CMIP coupled GrIS-climate projection
- Here, we use CESM2 at same resolution as for projections to simulate LGM climate and ice sheet SMB
- CAM6 replaced by CAM5


method

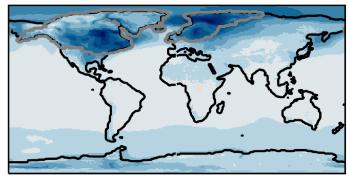
Simulation design


- We compare 21 ky and 26 ky runs to PI
- Ice sheet reconstruction from GLAC-1D (North American) and British-CHRONO (Eurasia)
- Forcing from PMIP

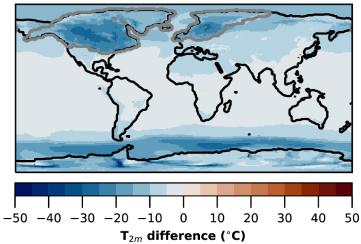
Parameter setting	LG-21 ka	LG-26 ka	
Solar constant	Pre-industrial	Pre-industrial	
Eccentricity	0.018995°	0.017742° ¹	
Obliquity	22.949°	22.31°1	
Perihelion-180	114.42°	32.09°1	
CO ₂ (ppm)	190	184 ²	
CH ₄	375	355 ³	
N ₂ O (ppb)	200	199 ⁴	
Others (CFC)	0	0	
Ozone	Pre-industrial	Pre-industrial	
Vegetation	21 ka ⁵	21 ka ⁵	
Land surface topography	21 ka	21 ka	
Ice sheets	21 ka	21 ka	
Ocean restart	CESM1 21ka ⁶	LG-21 ka	
Climate restart	CESM2 21 ka ⁷	LG-21 ka	
Simulation length	500 years	500 years	

¹ Berger (1978). ² Bereiter et al. (2015). ³ Loulergue et al. (2008). ⁴ Schilt et al. (2010). ⁵ Offline BIOME4 simulation (Kaplan et al., 2003). ⁶ DiNezio et al. (2018). ⁷ Zhu et al. (2021).

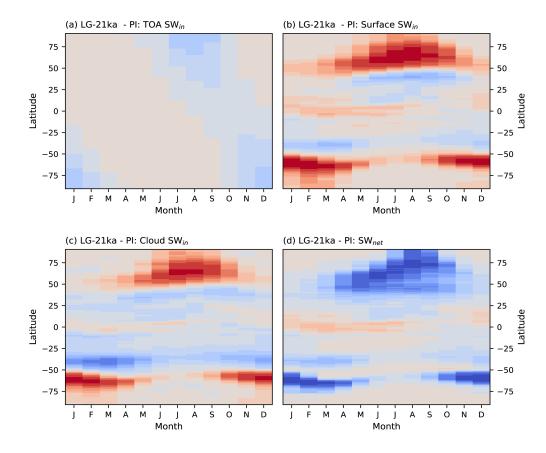
- Vegetation types for high and mid NH latitudes was taken from model BIOME4 with LGM atmospheric forcing
- For other regions, PFTs were left unchanged with respect to PI simulation


climate

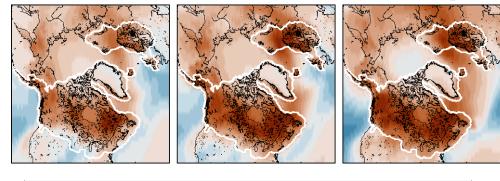
-6.8 K w.r.t. pre-industrial


	LG-26 ka	LG-21 ka	CCSM4	PMIP4	Proxy
Global precipitation (mm d ⁻¹)	2.50 {0.01} (-0.58)	2.59 {0.01} (-0.49)	2.61 (-0.32)	2.72 ¹	
Tropical precipitation (mm d-1)	3.26 {0.01} (-0.48)	3.32 {0.02} (-0.42)	3.93 (-0.36)		
Global near-surface T (°C)	6.47 {0.09} (-8.30)	7.93 {0.11} (-6.84)	9.83 ¹		6.40 (-7.10) ⁵
Global surface T (°C)	7.39 {0.09} (-8.26)	8.86 {0.11} (-6.79)	9.04 (-4.97)	11.54^{2}	
Tropical land surface T (°C)	21.42 {0.16} (-4.42)	22.28 {0.18} (-3.56)	20.89 (-2.61)		$(-3.9)^8$
GRIP (°C)	-42.38 {1.51} (-14.39)	-38.35 {1.48} (-11.36)	-37.76 (-8.54)		$(-11.5)^7$
Vostok (°C)	-62.35 {0.58} (-12.39)	-60.31 {0.72} (-10.35)	-62.84 (-9.97)		(-12)6
Global precipitable water (mm)	17.14 {0.10} (-8.69)	18.30 {0.18} (-7.53)	18.84 (-5.09)		
Tropical SST (°C)		23.14 {0.14} (-3.35)	24.78 (-2.16)	23.30^{3}	$(-3.5)^8$
AMOC at 30° N (Sv)	17.1	18.4	22	16-24	
Sea ice area NH (×10 ⁶ km ²)	12.54 {0.39} (2.74)	9.39 {0.21} (-0.41)	8.64 (-3.06)		9.40 ⁴
Sea ice area SH (×10 ⁶ km ²)	29.65 {0.47} (20.65)	25.87 {0.41} (16.87)	27.88 (10.9)		24.72 ⁴

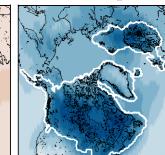
¹ AWI-ESM-1-1-LR, INM-CM4-8, MIROC-ES2L, MPI-ESM1-2-LR. ² MIROC-ES2L. ³ MIROC-ES2L, MPI-ESM1-2-LR. ⁴ Paul et al. (2021). ⁵ Osman et al. (2021). ⁶ Petit et al. (1999). ⁷ Lecavalier et al. (2014). ⁸ Tierney et al. (2020).

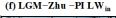

(b) LG-21ka - PI DJF

(d) LG-21ka - PI JJA

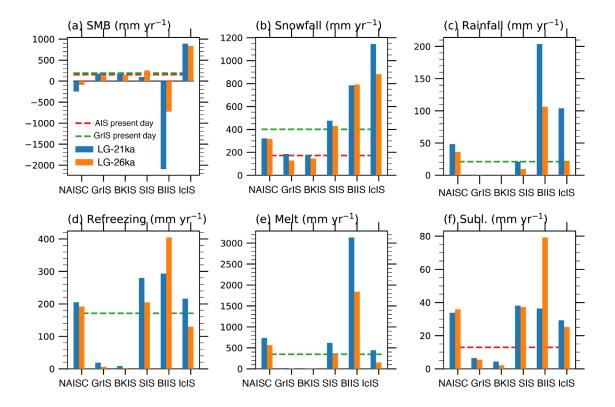

• Largest cooling with respect to PI is simulated over ice sheets, in connection with higher elevation and albedo

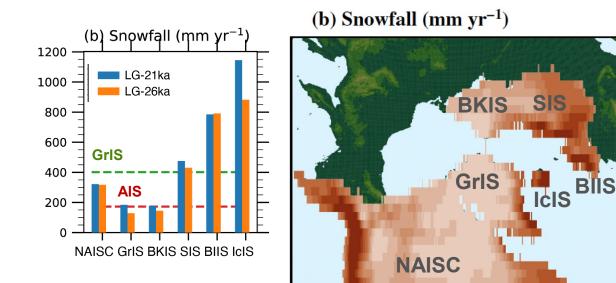
- Reduced summer TOA solar radiation with respect to PI
- However, less cloud cover and increased surface albedo result in increased incoming solar radiation at the surface
- Summer net solar radiation is less than PI due to higher albedo


(a) LG21ka - PI SW cloud forcing (b) LG21ka - PI SW

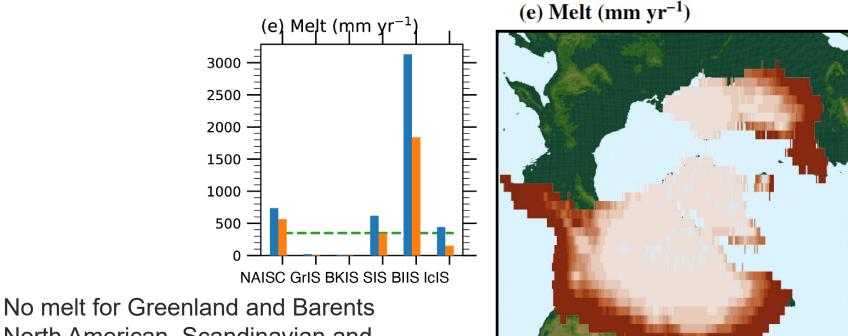

(c) LGM–Zhu – PI SW_{in}

(d) LG21ka – PI LW_{in} cloud forcing (e) LG-21ka – PI LW_{in}

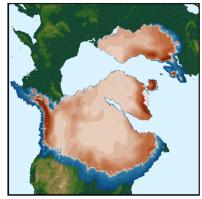


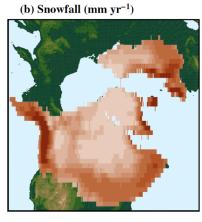


- Cloud forcing increase surface solar radiation with respect to PI except in the margin
- Incoming longwave
 radiation largely reduced with
 respect to PI over the ice
 sheets due to increased
 surface elevation

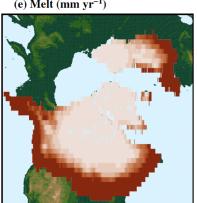

surface mass balance

SMB=Snowfall-Melt+Refreezing-Sublimation


- Greenland & Barents are the dryest
- Scandinavian similar to present-day Greenland
- North American in between present-day Antarctica and Greenland
- British and Icelandic have highest snowfall

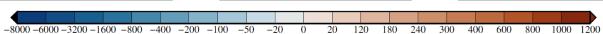

 North American, Scandinavian and Icelandic moderately over present-day Greenland

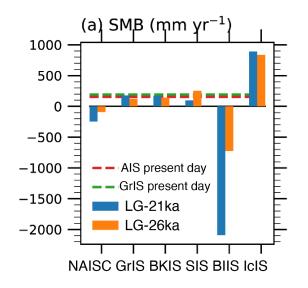
• Very large melt for the British ice sheet


(a) SMB (mm yr⁻¹)

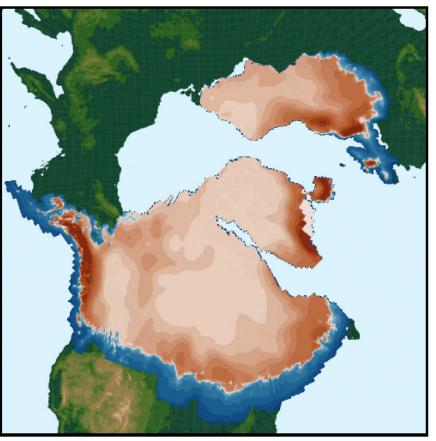
(d) Refreezing (mm yr⁻¹)

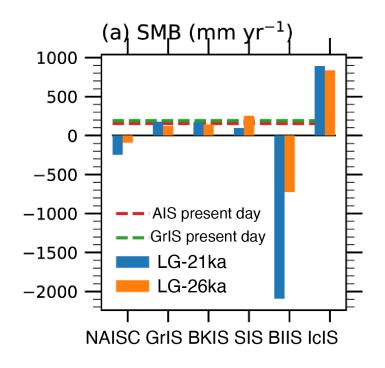
(e) Melt (mm yr⁻¹)



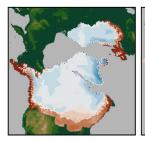

(c) Rainfall (mm yr⁻¹)

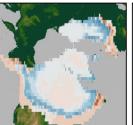
(f) Sublimation (mm yr⁻¹)





- Greenland and Barents SMB similar to present-day GrIS
- North American Complex has negative SMB
- Very low British ice sheet SMB
- High Icelandic ice sheet SMB

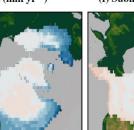

(a) SMB (mm yr⁻¹)

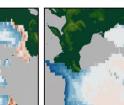


26 ky minus 21 ky

(a) SMB ($mm yr^{-1}$)

(d) Refreezing (mm yr⁻¹)




-800 -400-200-100-50-20

-6000 - 3200 - 1600

-8000

Higher SMB in 26 ky

20

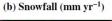
Less melt and precipitation in 26 ky

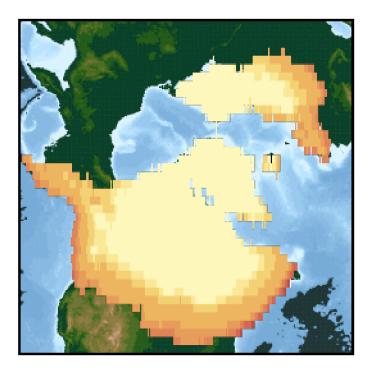
120

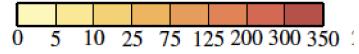
180 240 300 400 600 800 1000

1200

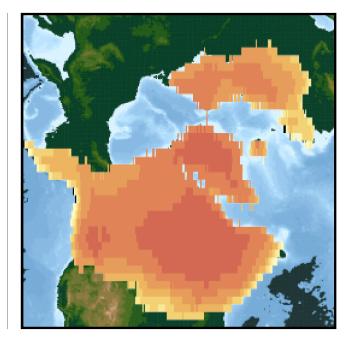
(c) Rainfall (mm yr⁻¹)

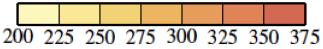




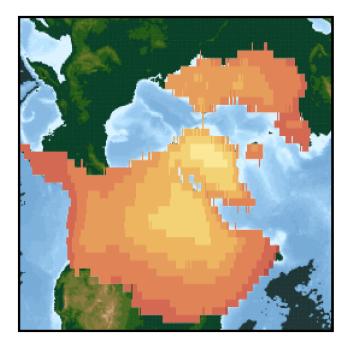


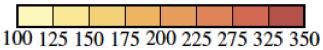
melt energy sources


(a) melt energy (W m⁻²)



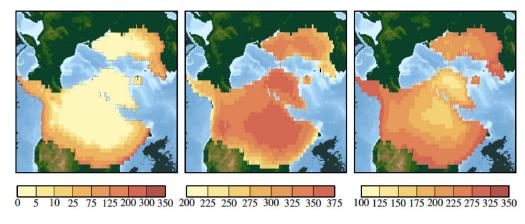
Melt energy sources are radiation sensible heat latent heat


(b) $SW_{in} (W m^{-2})$



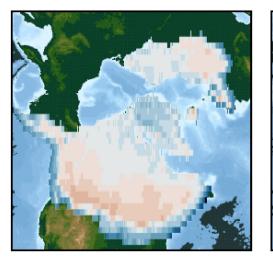
 Highest incoming solar radiation in the interior of the ice sheets, as for presentday Greenland

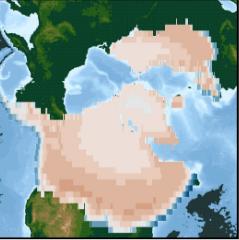
(c) $LW_{in} (W m^{-2})$



 Highest incoming longwave radiation in the southern margins of the ice sheets and Pacific and Antarctic margins of North American

(a) melt energy (W m⁻²) (b) SW_{in} (W m⁻²)

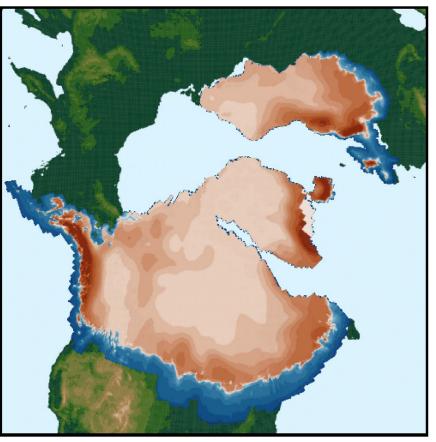

(c) LW_{in} (W m⁻²)



- Highest solar net over melt areas due to lowest albedo values
- Highest net longwave roughly over same areas

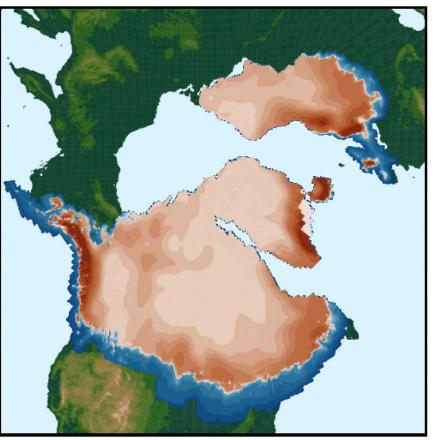
(d) $SW_{net} (W m^{-2})$ (e) $LW_{net} (W m^{-2})$ (f) Albedo(-) (f) Albedo(-)(g) $M_{net} (W m^{-2})$ (f) Albedo(-)

(g) sensible heat flux (W m^{-2}) (h) latent heat flux (W m^{-2})



 Highest inputs of sensible and latent heat over the margins conclusions

- First LGM analysis of surface mass and energy components at CMIP resolution
- GrIS & BKIS average snowfall similar to present-day AIS; SIS similar to GrIS
- NAIS snowfall between presentday GrIS & AIS
- No melt for GrIS and BKIS; NAIS & SIS higher than present-day GrIS


• Very large ablation in the southern margin of Laurentide due to low albedo and large sensible heat flux regardless of low incoming SW due to cloudiness

(a) SMB (mm yr⁻¹)

• Follow-up: large ablation area and amount connected with large low elevation areas from reconstruction?

(a) SMB (mm yr⁻¹)

