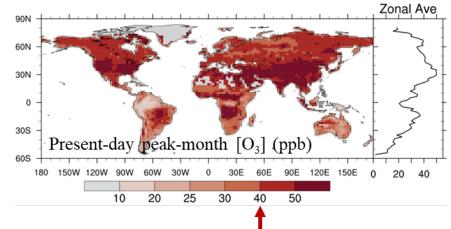

Modeling Ozone-Induced Damage to Vegetation: A New Parameterization Scheme for Land Surface Models

Fang Li

Zhimin Zhou Samuel Levis Stephen Sitch Danica Lombardozzi Felicity Hayes Zhaozhong Feng Peter B. Reich



Surface ozone (O₃) : the primary air pollutant threatening global vegetation

Plant sensitivity: ~ 40 ppb

Photosynthetic rate \downarrow

- decrease Rubisco enzyme content and activity
- decrease chlorophyll content
- alter chloroplast structure
- impair electron transport chain
- decrease mesophyll and stomatal conductance

Stomatal conductance \downarrow

- ABA-triggered Ca²⁺ entry in guard cells
- inhibit K⁺ channels
- disrupt signal transduction pathways
- increase internal leaf CO₂
- damage stomatal apparatus

- carbon, water, energy cycles
- ecosystem composition and structure
- plant and crop growth
- crop yield, timber, forage
- surface climate
- atmospheric composition

Integrate the photosynthetic and stomatal responses to O₃ in global process-based models

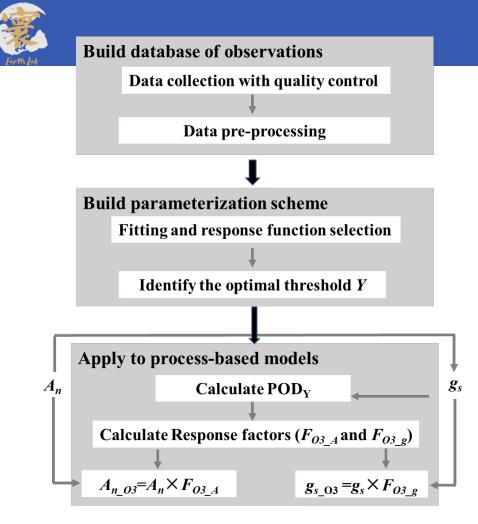
Sitch 2007 (S07): JULES and YiBs (from TRIFFID)
Photosynthetic response thresholds: Linear function of O₃ flux; parameters derived by fitting observed relationship between POD_Y(cumulative O₃ uptake over a flux threshold Y) and biomass/yield response

Cons:

Provides only response thresholds (not optimal) Assumes model is perfect (not true) Assumes $F_{O3_An} = F_{O3_gs}$ (not true) Parameters are model-dependent, and for crops, NT, BT (grass uses crop's & shrub uses BT's)

Lombardozzi 2015 (L15): CLM5

Responses of An and gs : Different functions of POD0.8, parameters derived based on photosynthetic and stomatal responses


$$F_{\text{O3}_An} = \begin{cases} 0.8752 \\ 0.8390 \\ \text{use Crop's} \\ -0.0009\text{POD}_{0.8} + 0.8021 \end{cases} F_{\text{O3}_gs} = \begin{cases} 0.9125 \\ 0.0048\text{POD}_{0.8} + 0.7823 \\ \text{use Crop's} \\ 0.7511 \end{cases} \text{Broadleaf tree \& shrub} \\ \text{Needleleaf tree \& shrub} \\ \text{Grass} \\ \text{Crop} \end{cases}$$

Pros:

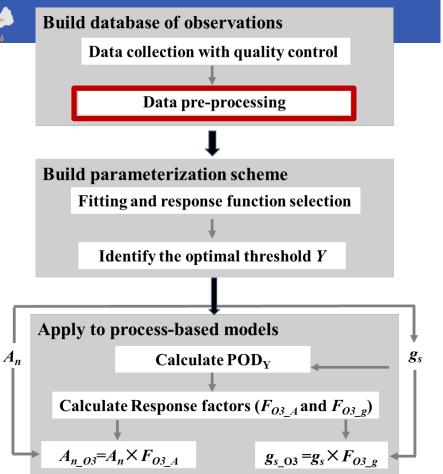
Address most limitations of S07

Cons:

- Constant responses used except for crop A_n and temperate evergreen tree g_s due to no significant linear fitting Eqs. found
- Grass uses crop's and shrub uses tree's parameters due to no obs.

New scheme

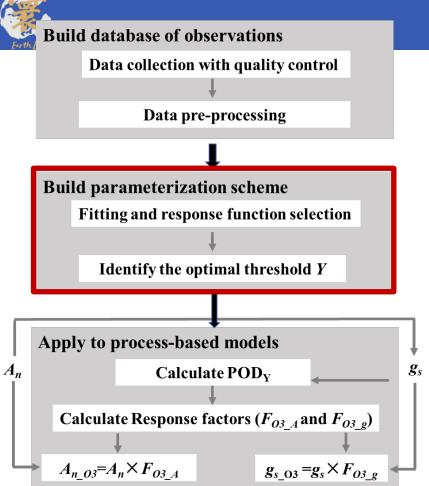
Li et al. (GMD, minor revisions)


Data collection with quality control

3496 (A_n) and 3890 (gs) observational data points after strict data quality control from 159 peer-reviewed articles and 238 plant species

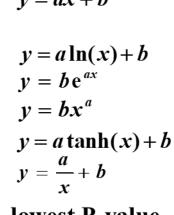
Category	Categorical level					
Plant type	BT	NT	Crop	Grass	Shrub	
	(81, 87, 3902)	(21, 13, 669)	(52, 117, 2293)	(9, 18, 266)	(4, 4, 25	
Plant age	<1	1 to 5	>5	N/A		
(year)	(63, 135, 2733)	(57, 54, 2735)	(12, 8, 200)	(40, 65, 1718)		
Control Air	Charcoal filtered	Ambient	Non-Filtered	N/A		
	(86, 145, 4399)	(48, 71, 1927)	(6, 7, 198)	(23, 39, 862)		
Exposure system	Growth chamber	Free-Air enrichment	Open top chamber	Greenhouse	Branch chamber	
	(41, 57, 1738)	(28, 33, 1583)	(75, 139, 3240)	(17, 30, 756)	(2, 2, 69)	
Rooting environment	Pot	Ground	N/A			
	(116, 183, 5178)	(26, 36, 1083)	(19, 33, 1125)			
Response variable	Photosynthesis	Stomatal conduc	tance			
	(140, 211, 3496)	(158, 236, 389	90)			

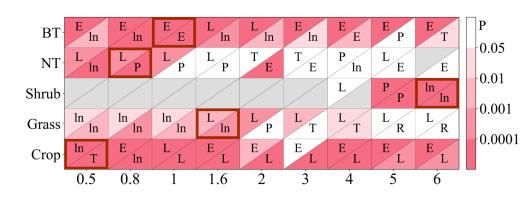
New: to 2022 L15: to 2011 S07: to 2004

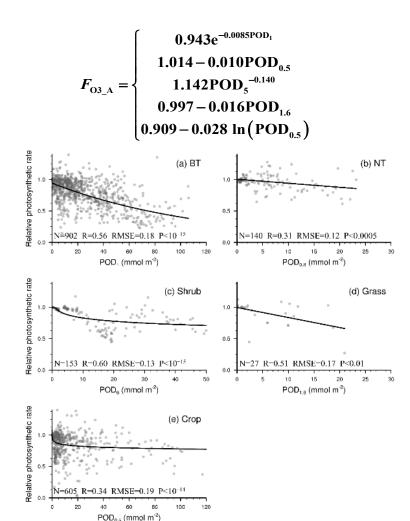


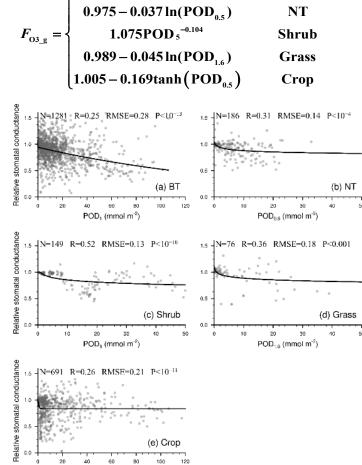
Data pre-processing

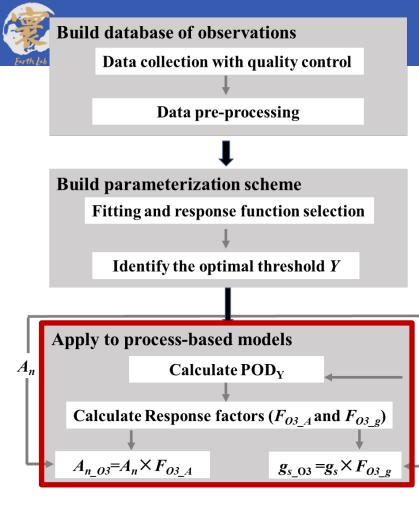
- $\succ Calculate POD_Y if not reported$
- Calculate relative A_n and g_s to that without O₃ stress for comparability of the O₃ effect across different exp., species, control air types, and dates within a given vegetation category
- Remove data with fitting intercepts outside 0.9 and 1.1 as CLRTAP
- > Remove data points at $POD_{Y}=0$




Optimal function: least RSS


Linear: v = ax + band non-linear: ln: **E**xponential: **P**ower: hyperbolic Tangent: **R**eciprocal:


Optimal *Y*:


lowest P-value

$$F_{\text{O3}_g} = \begin{cases} 0.943e^{-0.0058\text{POD}_{1}} & \text{BT} \\ 0.975 - 0.037\ln(\text{POD}_{0.5}) & \text{NT} \\ 1.075\text{POD}_{5}^{-0.104} & \text{Shrub} \\ 0.989 - 0.045\ln(\text{POD}_{1.6}) & \text{Grass} \\ 1.005 - 0.169\tanh(\text{POD}_{0.5}) & \text{Crop} \end{cases}$$

Cumulative O₃ uptake during growing season POD_{Y,t} = POD_{Y,t-1} $(1 - D_t) + U_{Y,t} \times 10^{-6}$

Decay fraction due to leaf senescence and emergence:

$$D_{t} = \begin{cases} \frac{\Delta t}{l_{\text{leaf}} \times 3600 * 24 * 365} & \text{evergreen} \\ \max(0, \ 1 - \frac{\text{LAI}_{t-1}}{\text{LAI}_{t}}) & \text{else} \end{cases}$$

O₃ uptake at timestep t : $U_{Y,t} = \begin{cases} \Delta t \times \max(F_{03,t} - Y, 0) & \text{daytime} \\ 0 & \text{else} \end{cases}$

 O_3 flux at timestep t

 g_s

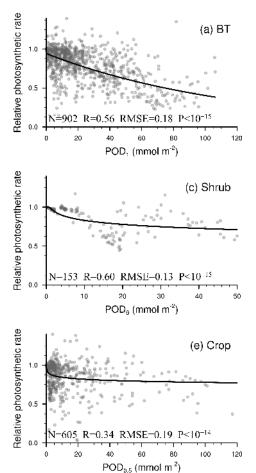
$$F_{\text{O3, }t} = \frac{[O_3]_t}{r_{b,t} + r_{am,t} + r_{s,t}k_{\text{O3}}}$$

Advantages of the new scheme

1. Larger dataset

Veg. type	New	L15	S07
BT	2183	266	45
NT	326	100	51
Shrub	302	0	0
Grass	103	16	0
Crop	1296	270	80
Total	4210	652	176

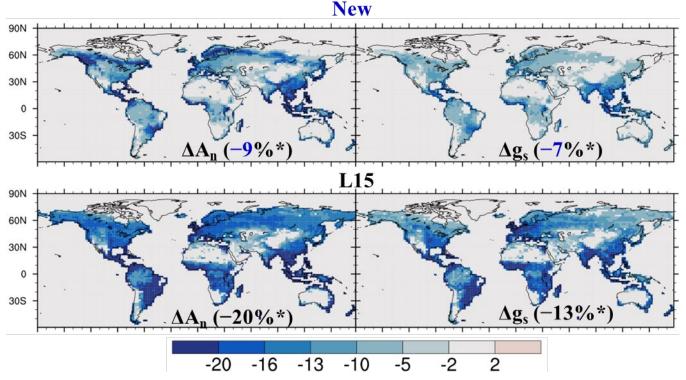
- Better representation
- Shrub & grass $(\sqrt{})$
- Model-independent
- Need not assume model perfect


2. Found functions to represent statistically significant responses in obs. for all veg. categories

$L15 \rightarrow New$					
Veg.	Photosynthetic	Stomatal			
type	rate	conductance			
BT	NS→***	NS→***			
NT	NS→***	NS→***			
Shrub	NS→***	NS→***			
Grass	NS→**	NS→***			
Crop	Both ***, New: $+ 8.1\% R^2$	NS→***			

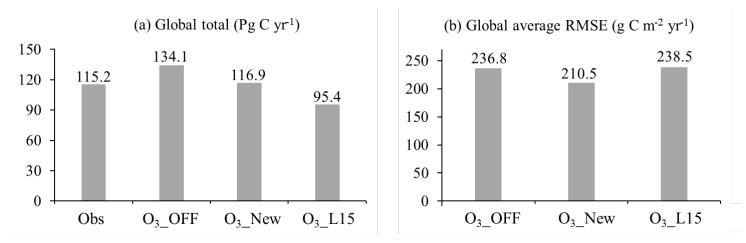
NS: non-significant, *: P<0.05, **: P<0.01, ***: P<0.001

- No need to apply function from one vegetation category to another
- No need to use constants


Nonlinear functions we built depict decreasing plant sensitivity with increasing POD_Y

3. Enable models to implicitly capture plant ozone tolerance variability and shift among species within a vegetation category

Influence of O₃ plant damage


on present-day photosynthetic rate (A_n) and stomatal conductance (g_s)

CLM5SP driven by EAC4 3-hr [O₃] reanalysis

New scheme decreases RMSE by 11% compared to no O₃ stress and by 12% compared to L15

➢ O₃ effect on global GPP total:

-13% (New) vs -29% (L15) in CLM5.0 I2000SP -9% (New) vs -32% (L15) in CLM5.2 I2000SP

Further development:

- Use sample size and standard error of data points
- Explore alternative functions
- Introduce other explanatory variables (e.g., leaf traits)
- PFT-level fitting

Email: lifang@mail.iap.ac.cn

Application:

- Quantify the role of O_3 plant damage in the Earth system
- Prediction & projection
- Quantify the contribution & potential impact of pollution reduction policies on ecosystem services

Li, F., et al., Quantifying the role of ozone-caused damage to vegetation in the Earth system: A new parameterization scheme for photosynthetic and stomatal responses, GMDD, <u>https://doi.org/10.5194/gmd-2024-6</u>, minor rev., 2024.