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The Al revolution has arrived for weather prediction
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Can hybrid approaches bring Al to climate modeling?

Pure ML Hybrid models Physics-based

GraphCast NeuralGCM Traditional NWP
Pangu-Weather Climate models



Can hybrid approaches bring Al to climate modeling?

Pure ML Hybrid models Physics-based

GraphCast NeuralGCM Traditional NWP

Pangu-Weather Climate models
Very little code Complex, but interpretable
Based on data Based on physics

Optimized for forecast accuracy Designed to generalize



So far, hybrid models have had mixed success

e Unstable simulations, climate drift

e I|dealized setting/learning from
idealized models

e Modest improvements in realistic
settings

E.g., Rasp et al. 2018, Brenowitz & Bretherton (2019), Yuval and O’Gorman (2021), Kwa at al. (2023)



So far, hybrid models have had mixed success

e Unstable simulations, climate drift

e I|dealized setting/learning from
idealized models

e Modest improvements in realistic
settings

Why? Hybrid models typically optimize the “wrong” metric
(offline learning)

E.g., Rasp et al. 2018, Brenowitz & Bretherton (2019), Yuval and O’Gorman (2021), Kwa at al. (2023)



Conventional hybrid models train an ML model “offline”
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Conventional hybrid models train an ML model “offline”

Train neural-net over single time step

N

Dynamical
core

Neural
network




Conventional hybrid models train an ML model “offline”
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Differentiable hybrid models can be trained end-to-end for
“online” performance
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Differentiable hybrid models can be trained end-to-end for
“online” performance

Training & inference
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NeuralGCM is a differentiable hybrid model for the Earth’s
atmosphere

Forcings F,
NeuralGCM combines a j
spectral dynamical core N -,
(written in JAX) with
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NeuralGCM is the first ML model to beat ECMWF’s
ensemble weather forecast on most metrics
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Audience quiz: Which of these forecasts is ERAS?

The other two are Neural GCM ensemble members

Option A Option B Option C

Total column water, 0-15 days



Audience quiz: Which of these forecasts is ERAS?

The other two are Neural GCM ensemble members

Option A Option B Option C

Total column water, +5 days



Audience quiz: Which of these forecasts is ERAS?

The other two are Neural GCM ensemble members

Option A Option B Option C

Total column water, +15 days



Audience quiz: Which of these forecasts is ERAS?

The other two are Neural GCM ensemble members

NeuralGCM NeuralGCM ERA5S

Total column water, +15 days



NeuralGCM trained on weather can also make climate
forecasts (with prescribed sea surface temperature)

Boundary conditions
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NeuralGCM near-term climate forecasts have less bias
than a global storm resolving model

140 km Neural GCM 3 km GFDL X-SHIiELD Precipitable water
RMSE = 1.09 mm RMSE = 1.74 mm bias for 2020 [mm]




NeuralGCM near-term climate forecasts have less bias
than a global storm resolving model

140 km Neural GCM 3 km GFDL X-SHIiELD Precipitable water
RMSE = 1.09 mm RMSE =1.74 mm bias for 2020 [mm]

70,000 sim days / day 19 sim days / day
1 Google TPU v4 13,824 CPU cores
$0.08 / simulated year $80,000 / simulated year



NeuralGCM near-term climate forecasts also have realistic
distributions of tropical cyclones

Neural-GCM, 83 TCs ERA5, 86 Tropical Cyclones
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NeuralGCM climate projections compare favorably to
atmosphere only (AMIP) climate models

Global mean temperature at 850 hPa
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NeuralGCM climate projections compare favorably to
atmosphere only (AMIP) climate models

850 hPa temperature bias vs ERAS (1980-2017)

CESM2 (RMSE=1.329K)
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Learn more about NeuralGCM

Read the paper Run the open source code
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NeuralGCM is not a complete climate model... yet

Needs to support
coupled modeling
(currently

atmosphere only)

Atmosphere

oo P4
Ocean Q[«¥W Land

Temperature [K]

Differentiability helps,
but climate instability &
drift is still a challenge.
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unprecedented future
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What the Al community needs from you: benchmarks!

Is there a WeatherBench for climate
modeling?
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GraphCast (oper.)

Keisler (2022)
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Google Academic Research Awards
for faculty:

e “Creating ML benchmarks for
climate problems”

e Up to 300k in funding

e Applications due on July 17, 2024



