AI-based climate modeling with NeuralGCM

Stephan Hoyer Google Research

NCAR CESM Workshop June 11, 2024 Boulder, CO

Acknowledgments: the Neural GCM team

The AI revolution has arrived for weather prediction

Chart by Stephan Rasp

The AI revolution has arrived for weather prediction

Chart by Stephan Rasp

The AI revolution has arrived for weather prediction

Can hybrid approaches bring AI to climate modeling?

Pure ML

Hybrid models

Physics-based

GraphCast Pangu-Weather NeuralGCM

Traditional NWP Climate models

Can hybrid approaches bring AI to climate modeling?

Pure ML

Hybrid models

Physics-based

GraphCast Pangu-Weather NeuralGCM

Traditional NWP Climate models

Very little code Based on data Optimized for forecast accuracy Complex, but interpretable Based on physics Designed to generalize

So far, hybrid models have had mixed success

- Unstable simulations, climate drift
- Idealized setting/learning from idealized models
- Modest improvements in realistic settings

E.g., Rasp et al. 2018, Brenowitz & Bretherton (2019), Yuval and O'Gorman (2021), Kwa at al. (2023)

So far, hybrid models have had mixed success

- Unstable simulations, climate drift
- Idealized setting/learning from idealized models
- Modest improvements in realistic settings

Why? Hybrid models typically optimize the "wrong" metric (offline learning)

E.g., Rasp et al. 2018, Brenowitz & Bretherton (2019), Yuval and O'Gorman (2021), Kwa at al. (2023)

Conventional hybrid models train an ML model "offline"

Conventional hybrid models train an ML model "offline"

Conventional hybrid models train an ML model "offline"

Differentiable hybrid models can be trained end-to-end for "online" performance

Differentiable hybrid models can be trained end-to-end for "online" performance

NeuralGCM is a differentiable hybrid model for the Earth's atmosphere

NeuralGCM combines a spectral **dynamical core** (written in JAX) with **neural network "learned physics**."

Models are trained on 3-5 day weather forecasts of the ERA5 reanalysis.

NeuralGCM is the first ML model to beat ECMWF's ensemble weather forecast on most metrics

NeuralGCM trained on weather can also make climate forecasts (with prescribed sea surface temperature)

Global mean temperature at 850 hPa

Boundary conditions

Total incident solar radiation Sea surface temperature Sea ice concentration NeuralGCM near-term climate forecasts have less bias than a global storm resolving model

NeuralGCM near-term climate forecasts have less bias than a global storm resolving model

140 km Neural GCM RMSE = 1.09 mm

3 km GFDL X-SHIELD RMSE = 1.74 mm

Precipitable water bias for 2020 [mm]

70,000 sim days / day 1 Google TPU v4 \$0.08 / simulated year 19 sim days / day 13,824 CPU cores \$80,000 / simulated year

NeuralGCM near-term climate forecasts also have realistic distributions of tropical cyclones

NeuralGCM climate projections compare favorably to atmosphere only (AMIP) climate models

NeuralGCM climate projections compare favorably to atmosphere only (AMIP) climate models

850 hPa temperature bias vs ERA5 (1980-2017)

Learn more about NeuralGCM

Read the paper

Run the open source code

arxiv.org/abs/2311.07222

github.com/google-research/neuralgcm

NeuralGCM is not a complete climate model... yet

Needs to support coupled modeling (currently atmosphere only)

Differentiability helps, but climate instability & drift is still a challenge.

Needs to ensure generalization to unprecedented future climate

What the AI community needs from you: benchmarks!

Is there a WeatherBench for climate modeling?

Google Academic Research Awards for faculty:

- "Creating ML benchmarks for climate problems"
- Up to 300k in funding
- Applications due on July 17, 2024