First application of artificial neural networks to estimate 21st century Greenland melt

Raymond Sellevold & Miren Vizcaino, Department of Geoscience and Remote Sensing, GRS, TU Delft, NL

European Research Council Established by the European Commission

Delft

The Greenland ice sheet (GrIS): present

- The GrIS has been losing mass since the early 90s at an increasing rate. Now at 0.7 mm/yr
- Due to atmospheric and ocean warming
- Largest contribution to mass loss is from enhanced surface melt

Sasgen, Wouters et al., Communications Earth & Environment (2020)

Research gap

- Regional climate models provide state-of-the art projections of GrIS melt
- These models dynamically downscale global projections of a particular global model
- They are computationally expensive: limited number of simulations are available
- On the other hand, very few global climate models include an interactive GrIS surface melt calculation

Idea

- CESM2 includes and advanced surface melt calculation on present-day topography for all standard runs
- Surface melt calculation compares reasonably well with regional modelling
- Can we use CESM2 output to train an artificial neural network that can use as predictor available atmospheric output from the *full suite of CMIP6 simulations*?

Geophysical Research Letters

RESEARCH LETTER 10.1029/2021GL092449 First Application of Artificial Neural Networks to Estimate 21st Century Greenland Ice Sheet Surface Melt

<mark>r</mark>

Special Section:

Community Earth System Model version 2 (CESM2) Special Collection Raymond Sellevold¹ ^[1] and Miren Vizcaino¹ ^[1]

¹Geoscience and Remote Sensing, Delft University of Technology, Delft, The Netherlands

Training data

10 historical and 19 scenario runs that include prognostic GrIS melt output

Artificial neural network

ANN analysis

Pre-processing

- We use here one independent CESM2 simulation for SSP5-8.5 (Noel et al., 2020)
- We find high correlation between **explicit** and **ANN** melt estimates
- One to three hidden layers are "activated" per variable.
- Each layer has different weights as time evolves

winter, GWL=4C

Summer, GWL = 4C

More melt for higher geopotential height

More melt for clear summer skies in (SW) margins & more cloudier interiors

rain/snow partition dominates margins versus increased precipitation in interior

Comparison With Regional Climate Modeling

• Best fit for CESM2

- Z500, CC and RADn underestimate melt
- Best fits for variables T2m and SNOW

Reference period=1979-1998

Comparison With Regional Climate Modeling (MAR)

- Now we use mean estimate from T2m and SNOW
- We find high correlation between ANN and dynamical downscaling estimates
- We decide to keep this variable combination for the projections

Surface melt projections

Analysis of uncertainty

Scenario	Global mean T_{2m}	CESM2	ANNs evaluated on CMIP6
Historical (mean)	16.0 ± 0.1	447 ± 90	521 ± 63
SSP1-2.6 (change)	1.6 ± 0.5	413 ± 95	414 ± 276
SSP2-4.5 (change)	2.5 ± 0.6	619 ± 140	724 ± 371
SSP3-7.0 (change)	3.5 ± 0.8	1,040 ± 170	1,031 ± 436
SSP5-8.5 (change)	4.4 ± 1.0	1,834 ± 152	1,378 ± 555

(c) Source of melt change uncertainty (Gt yr^{-1}) Variable Primary source is Internal climate 400 -Model model spread (1 σ), Scenario 300 · followed by scenario & choice of input 200 . variable 100 0 . 1960 1980 2000 2020 2040 2060 2080 2100 Year

Model spread relates to climate sensitivity

Conclusions

- Strong correlation with prognostic variable for all variables for independent CESM simulation
- For other models, temperature and snowfall are best predictors, with overall good performance compared with dynamical downscaling (RCM)
- Large contribution to uncertainty from model spread
- Projections provided for full CMIP6 archive, complementary to selected RCM projections