

UKESM2

development pathway, progress and plans towards CMIP7

Jane Mulcahy, Colin Jones, UKESM development team, GC development team and many collaborators

The Earth System

Earth system models represent both the physical climate and carbon cycle, as well as other important components of the **coupled** Earth system e.g. atmospheric chemistry, aerosols, vegetation, marine biogeochemistry, cryosphere

What is UKESM?

- UKESM is the UK's Earth System model jointly developed by the Met Office and NERC (Natural Environment Research Council).
- UKESM consists of the HadGEM3 global coupled physical climate model plus additional components that model key biogeochemical, chemistry, aerosol and vegetation and cryosphere processes.
- UKESM1 released to the community in February 2019 and provided a significant part of the UK's contribution to CMIP6.
- In 2023 an updated version UKESM1.1 was released.
- Currently developing UKESM2 \rightarrow CMIP7 and beyond.

CMIP7 plans

CMIP7 Fast Track & Timelines

UKESM1.3

UKESM1.1

Significant improvement in the historical GMST record.

EffCS = 5.3K

Mulcahy et al., (2023) GMD <u>https://doi.org/10.5194/gmd-16-1569-2023</u>

UK Delivery to CMIP7

- Emissions driven focus UKESM-based model UKESM1.3 or UKESM2
- Possibly a physical model GC5-based contribution with more "central" value for ECS
- High-resolution frontiers simulations (subset of FT) GC5-EERIE
- UKESM2 contributing to longer term Community MIPs

GC5-EERIE N640-O12 (20km atmos, 8km ocean)

UKESM2

Met Office UKESM2 structure & couplings 阳 Natural Environment Research Council UKESM UM Radiative properties; Meteorology Key: Physical atmosphere UKCA-mode component ARI + ACI GAL9 ES component Chemistry Soil properties Aerosol JULES Fire emissions, BVOCs TRIE land N deposition? Chl Sl³ sea-ice **Ice Sheets** DMS CO_2 **Closed cycles** Fe of CO₂ and **MEDUSA** ocean NEMO **CH**₄ T, S, <u>u,</u> Chl? biogeochemistry (4.2.2) ocean Physical Component: HadGEM3-GC5

Resolution: N96L85 (atmos ~135km, model top 85km) and 1° L75 (ocean)

UKESM2 key new science capability

- Emission-driven configuration for both CO₂ and CH₄ as standard
- Interactive fire; coupled to atmospheric composition & carboncycle + dynamic vegetation
- Nitrate aerosol
- GC5-central physical model
- Interactive ice sheets for Greenland and Antarctica in the standard model
- Package of UKCA composition improvements
- Permafrost coupled to C and N cycle and wetlands
- Nitrogen coupling atmosphere \rightarrow land surface

of maturity Science level

HadGEM3-GC5 physical climate

Histogram of change in spatial RMSE of mean fields in valnote

GC5-emergent: General present-day performance improved relative to previous configurations

GC5 = **GAL9** atmosphere + land 40 unper 30 configuration + **GOSI9** ocean & SI ACC transport (Sv) : GOSI9_GO6 GOSI9-1deq GO6-1dec GOSI9-1/4deg GO6-1/12deg GOSI9-1/12dea 170 150 130 120 1985 2005 2000

GC5-central

Preliminary results!

Use a PPE and emulator approach to produce a GC5 parameter set which has an EffCS within the IPCC AR6 *very likely* range and improved historical performance *without unacceptably degrading overall climate metrics*.

Based on Peatier et al., (2022) GAL9 PPE: 5-yr runs of *amip* and *amipFuture-p4K:* 503 members, perturbing 73 parameters. Targets $I_{4K} < -1.4 \text{ W m}^{-2} \text{ K}^{-1}$.

Alejandro Bodas-Salcedo, David Sexton, John Rostron

The move towards emission driven simulations Captures full uncertainty in future emission pathways

WKESM

Captures:

- Diurnal & seasonal cycles in plant uptake and respiration
- Interactive land use emissions of CO2
- Important feedbacks, eg: feedback of CO2 forcing on carbon sinks; fire; permafrost

Important for carbon budgets, system response/reversibility to zero or negative emissions → TCRE and ZEC

Diagnosed via Flat10 experiments now in Fast Track

Enables important couplings and feedbacks between global wetlands and atmospheric chemistry.

Folberth et al., (2022) JAMES <u>https://doi.org/10.1029/2021MS002982</u>

Interactive fire

INFERNO: Interactive Fires and Emissions algorithm for Natural envirOnments Coupling fire to vegetation dynamics, carbon cycle and atmospheric composition

BLE tropical tree fraction

Change in AOD

-0.10 -0.05 0.00 0.05 0.10 AOD at 550 nm

Chantelle Burton, Eddy Robertson, Phil Harris, Joao Teixera, Amy Peace

Permafrost carbon

Implementation of a vertically resolved soil carbon and nitrogen in UKESM.

Developments to-date are in offline JULES simulations.

Overall good comparison of total soil C and vertically resolved carbon against observations. 863 Gt C in permafrost in JULES comparable with observations

Ice Sheets

Unicicles: Interactive models of the Greenland and Antarctic ice sheets

Captures physical feedbacks between ice sheets and the climate system consistent with global climate projections enabling:

- sea level rise projection in UKESM
- Investigation of climate tipping points for ice sheets

Atmospheric composition

Key developments:

- Interactive fire emissions of OC, BC, SO₂, CO₂, CH₄, NOx
- Nitrate aerosol
- Boundary layer nucleation of aerosol particles (Metzger (2010))
- iBVOC \rightarrow Isoprene source of secondary organic aerosol
- Interactive cloud water pH →aerosol aqueous phase chemistry
- 3 mode mineral dust simulated via GLOMAP-mode
- Improve stratospheric ozone biases

Improvements in simulation of stratospheric ozone: Total Column Ozone (60S-60N) comparison (from Keeble et al. (2020), doi:10.5194/acp-21-5015-2021)

Dan Grosvenor, Catherine Hardacre, Steven Turnock, Amy Peace, Steph Woodward, James Keeble, Luke Abraham

UKESM RI

Environment Research Council

Aerosol number concentration bias

Summary

- Key new science capability (eg: interactive fire, nitrate aerosol, emission-driven CO₂ and CH₄) is at advanced stage of development and are being tested now in coupled UKESM2 prototype. Other developments in standalone fully coupled package testing.
- Ambition to include as many interactive couplings in UKESM as possible where we believe these coupled feedbacks are important in future climate simulations.
- HadGEM3-GC5 emergent configuration has a high ECS of >6K. GC5-central targets a set of parameter settings which brings ECS within IPCC very likely range.
- CMIP7 Fast Track timelines are very challenging. We have a UKESM1.3 configuration ready for use in the FT to meet IPCC timelines if needed and are now spinning this up in parallel to finalising UKESM2.
- In CMIP7 FT we will run $CO_2 \& CH_4$ emission driven only (no concentration driven runs, apart from the necessary $1\% CO_2$, $4X CO_2$ and a parallel piControl for these simulations).
- HadGEM3-GC5 physical model configurations (including a high resolution version) will also very likely contribute to CMIP7.