Isolating the Influence of Temperature-dependent Cloud Optics on Infrared Radiation within a Model Hierarchy

CESM Workshop 2024 June 12th, 2024

Ash Gilbert^{1,2}, Jen Kay^{1,2}, and Penny Rowe³ ¹Department of Atmospheric and Oceanic Sciences, University of Colorado at Boulder ²Cooperative Institute for Research in Environmental Sciences ³NorthWest Research Associates

Funded by NASA PREFIRE & NSF Graduate Research Fellowship

Optical properties of liquid water have a temperature dependence for supercooled liquid water

Gilbert et al., *in* prep.

1) How can we assess the importance of a cloud optics change like adding temperature-dependent optics?

2)Are the effects of temperature-dependent liquid water optics on longwave radiation substantial enough to be incorporated into model radiation schemes?

1) Two-stream radiative transfer

model – *do we see an effect with a conceptual model on a spectral scale?*

2) Single-column atmospheric model –

do we see an effect with an atmospheric model at a single location on a daily time

scale?

3) Freely-evolving global climate model

- do we see an effect with a global climate model over the entire Arctic on a decadal time scale?

4) Wind-nudged global climate model

- do we see an effect with a dynamically constrained global climate model over the entire Arctic at various time scales?

Increasing Model Complexity

Do we see an effect with a conceptual model on a spectral scale?

 Modeled downwelling spectral longwave from a single supercooled liquid cloud with temperature-dependent and temperature-independent optics

Two-stream downwelling longwave flux: reflected ground emission + cloud emission $F_{\rm sfc}(1 - r_{\rm sfc}) * r_{\rm cld} + \varepsilon_{\rm cld} * F_{\rm cld}$

Gilbert et al., *in*

Single-column Atmospheric Model

Do we see an effect with an atmospheric model at a single location on a daily time scale?

- Single-Column Atmospheric Model Version 6 (SCAM)
 - Single-column version of the atmospheric component from CESM2
 - Forced by 17 days of observations from an Arctic field campaign (MPACE)

Downwelling longwave data only when low-level supercooled liquid clouds were present

Optics Set	Median (W m ⁻²)	Median _{optics} set Median _{control} optics (W m ⁻²)	Statistically significant difference?
Control	306.99		
240 K	307.32	0.33	No
263 K	307.40	0.41	No
273 K	307.10	0.11	No

Gilbert et al., *in prep.*

Freely-evolving Global Climate Model

Do we see an effect with a global climate model over the entire Arctic on a decadal time scale?

CESM2

- 1) Prescribed sea ice and SSTs with pre-industrial climate (F1850 compset) *decadal time scale with freely evolving atmosphere*
 - 40 year run

Gilbert et al., *in prep.*

Wind-nudged Global Climate Model – Part I

Do we see an effect with a dynamically constrained global climate model over the entire Arctic?

CESM2

- Prescribed sea ice and SSTs with pre-industrial climate (F1850 compset) and nudged winds from 1980 – yearly time scale with constrained atmosphere
 - 1 year run with 10 ensemble members
- 2) Coupled ocean & sea ice models with preindustrial climate (B1850 compset) and nudged winds from 1980 – ocean/sea ice feedbacks with constrained atmosphere
 - 1 year run with 10 ensemble members

-6

-9

Gilbert et al., in prep.

Gilbert et al., *in prep.*

Wind-nudged Global Climate Model – Part II

Do we see an effect with a dynamically constrained global climate model over the entire Arctic at decadal time scales?

CESM2

- 1) Prescribed sea ice and SSTs with pre-industrial climate (F1850 compset) and nudged winds from 1980-2018 *decadal time scale with constrained atmosphere*
 - 39 year run with 3 ensemble members

Gilbert et al., *in prep.*

Conclusions

Was the effect of the temperature-dependent optics on longwave flux substantial?

- **1)Two-stream radiative transfer model:** *small effect on the order of a few tenths of W m*⁻²
- **2)Single-column atmospheric model:** *no effect for all clouds, small effect on the order of a few tenths of W m*⁻² *for supercooled liquid clouds only*
- **3)Freely-evolving global climate model:** *small and statistically insignificant effect on the order of a few W m*⁻²
- **4)Wind-nudged global climate model:** *statistically significant effect for the year-long and decades-long ensembles, but statistically insignificant effect for the coupled ensemble*

Conclusions

Was the effect of the temperature-dependent optics on longwave flux

Takeaway #1: The effects of temperature-dependent optics are not substantial enough to be a first priority for model parameterization development

2)Single-column atmospheric model: *no effect for all clouds, small effect on the order of a few tenths of W m² for supercooled liquid clouds only*

3)Freely-evolving global climate model: *small and statistically insignificant effect*

Takeaway #2: A model hierarchy that includes wind nudging is a powerful model development tool to assess the importance of a model physics change

couplea ensemble

Contact: ash.gilbert@colorado.edu