Climate forcing of the mid-Pliocene in three versions of the Community Earth System models

Ran Feng and Noah Kravette

Mid-Pliocene

- 3.3 3.0 Millions of years ago
- Last pro-longed warm interval with low Glacial-interglacial variability
- 400 ppm CO₂
- Limited Greenland and Antarctic ice sheet
- Expansive boreal forests, Green Sahara, reduction in desert extent
- Well-studied paleoclimate interval for understanding future climate change

Pliocene Model Intercomparison Project

- Substantially warmer mid-Pliocene climate than what is expected from CO₂ forcing alone
 - forcing from boundary condition changes?
- Models diverge substantially in simulating mid-Pliocene warmth
 - 1.7 to 5.2 °C warming
- Climate forcing strength of the mid-Pliocene?

Model name	ECS	Eoi400	E280	Eoi400-E280
		SAT	SAT	SAT
CCSM4-Utrecht	3.2	18.9	13.8	4.7
CCSM4	3.2	16.0	13.4	2.6
CCSM4-UoT	3.2	16.8	13.0	3.8
CESM1.2	4.1	17.3	13.3	4.0
CESM2	5.3	19.3	14.1	5.2
COSMOS	4.7	16.9	13.5	3.4
EC-Earth3.3	4.3	18.2	13.3	4.8
GISS2.1G	3.3	15.9	13.8	2.1
HadCM3	3.5	16.9	14.0	2.9
IPSLCM6A	4.8	16.0	12.6	3.4
IPSLCM5A2	3.6	15.3	13.2	2.2
IPSLCM5A	4.1	14.4	12.1	2.3
MIROC4m	3.9	15.9	12.8	3.1
MRI-CGCM2.3	2.8	15.1	12.7	2.4
NorESM-L	3.1	14.6	12.5	2.1
NorESM1-F	2.3	16.2	14.5	1.7
MMM	3.7	16.5	13.3	3.2

Pliocene Model Intercomparison Project

- Substantially warmer mid-Pliocene climate than what is expected from CO₂ forcing alone
 - forcing from boundary condition changes?
- Models diverge substantially in simulating mid-Pliocene warmth
 - 1.7 to 5.2 °C warming
- Climate forcing strength of the mid-Pliocene?

Model name	ECS	Eoi400	E280	Eoi400-E280
		SAT	SAT	SAT
CCSM4-Utrecht	3.2	18.9	13.8	4.7
CCSM4	3.2	16.0	13.4	2.6
CCSM4-UoT	3.2	16.8	13.0	3.8
CESM1.2	4.1	17.3	13.3	4.0
CESM2	5.3	19.3	14.1	5.2
COSMOS	4.7	16.9	13.5	3.4
EC-Earth3.3	4.3	18.2	13.3	4.8
GISS2.1G	3.3	15.9	13.8	2.1
HadCM3	3.5	16.9	14.0	2.9
IPSLCM6A	4.8	16.0	12.6	3.4
IPSLCM5A2	3.6	15.3	13.2	2.2
IPSLCM5A	4.1	14.4	12.1	2.3
MIROC4m	3.9	15.9	12.8	3.1
MRI-CGCM2.3	2.8	15.1	12.7	2.4
NorESM-L	3.1	14.6	12.5	2.1
NorESM1-F	2.3	16.2	14.5	1.7
MMM	3.7	16.5	13.3	3.2

Effective radiative forcing and adjustments

• Effective radiative forcing and adjustments: "changes that occur directly due to the forcing, without mediation by the global-mean temperature, as "adjustments" and the accordingly modified top-of-atmosphere radiative imbalance as the "effective" radiative

forcing" (e.g., Sherwood et al., 2015)

Diagnose effective radiative forcing and adjustments

- Fixed SST simulations with three groups of forcing agents
 - CO₂
 - Vegetation + Ice sheets
 - Geography + topography
 - Combined forcing
- SSTs and sea ice from coupled simulations of the same model
 - CCSM4
 - CESM1.2
 - CESM2 (only has CO₂ and combined forcing)
- Run for ~30 years, last 20 years for average

Diagnose effective radiative forcing and adjustments

- Fixed SST simulations with three groups of forcing agents
 - CO₂
 - Vegetation + Ice sheets
 - Geography + topography
 - Combined forcing
- SSTs and sea ice from coupled simulations of the same model
 - CCSM4
 - CESM1.2
 - CESM2 (only has CO₂ and combined forcing)
- Run for ~30 years, last 20 years for average

• ERF =

 $(FSNT - FLNT)_{Pert} - (FSNT - FLNT)_{PI}$

- Adjustments = K_x(X_{pert} X_{Pl}) K_x: radiative kernel coefficient X: T, T_s, q, α (Pendergrass et al., 2018)
- ERF_ts = ERF K_x(Ts_land_{pert} Ts_land_{PI})
 - correct for land T changes

 CO₂ accounts for 60 to 68% of the total ERF, or 57% to 63% of the total ERF_ts.

- CO₂ accounts for 60 to 68% of the total ERF, or 57% to 63% of the total ERF_ts.
- Contribution from Ice+Veg is about 2/3 of that of CO₂
 - Partially compensated by topo+geo changes

- CO₂ accounts for 60 to 68% of the total ERF, or 57% to 63% of the total ERF_ts.
- Contribution from Ice+Veg is comparable to CO₂
 - Partially compensated by topo+geo changes
- Forcing increase from CCSM4 to CESM1 is driven by amplified non-CO₂ forcing

- CO₂ accounts for 60 to 68% of the total ERF, or 57% to 63% of the total ERF_ts.
- Contribution from Ice+Veg is comparable to CO₂
 - Partially compensated by topo+geo changes
- Forcing increase from CCSM4 to CESM1 is driven by amplified non-CO₂ forcing, from CESM1 to CESM2 is driven by CO₂ forcing.

Adjustments

 In the case of CO₂, the net adjustments is negligible for CCSM4, but ~20% in CESM2 due primarily to cloud adjustment.

Adjustments

- In the case of CO₂, the net adjustments is negligible for CCSM4, but ~20% in CESM2 due primarily to cloud adjustment.
- Combined forcing mainly comes from surface albedo changes (direct forcing from veg+ice)
 - Negative contributions from cloud adjustments

Spatial distribution of the ERF

- CO₂ forcing is the strongest in the tropics and Arctic region.
- Forcing from veg+ice, topo+geo mainly reflects surface albedo changes.

Preliminary results

- CO₂ perturbation provides ~60% forcing for mid-Pliocene climate.
- Combined forcing increases with increasing climate model sensitivity
 - from different sources
- Adjustments to the combined forcing differs from CO₂ forcing
 - cloud adjustments switch signs

Questions?