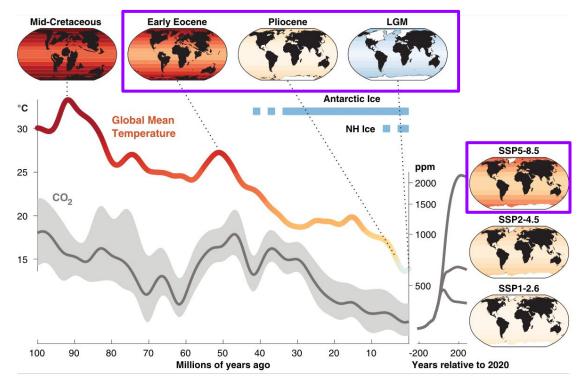
Atmospheric river activity over the past ~56 million years in an unprecedented set of high-resolution CESM simulations

Sophia Macarewich¹, Bette L Otto-Bliesner¹, Jiang Zhu¹, Esther Brady¹, Ran Feng², Clay Tabor², Jesse Nusbaumer¹, Jessica Tierney³, Andrew Walters³, Juan Lora⁴, and Chijun Sun⁴


¹NSF NCAR; ²Univ. of Connecticut; ³Univ. of Arizona; ⁴Yale Univ.; ⁵UC Davis

FEBRUARY 26, 2024

This material is based upon work supported by the NSF National Center for Atmospheric Research, which is a major facility sponsored by the U.S. National Science Foundation under Cooperative Agreement No. 1852977

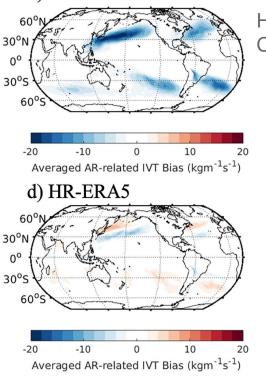
paleoWeather Accelerated Scientific Discovery project

Hi-res iCESM1.3 (iHESP version) ~0.25 atm/Ind, ~0.1 ocn/ice

- Pre-Industrial
- Last Glacial Maximum
- Pliocene
- Eocene 3x
 - 854 ppmv CO₂
 - Eocene 6x
 - 1708 ppmv CO₂

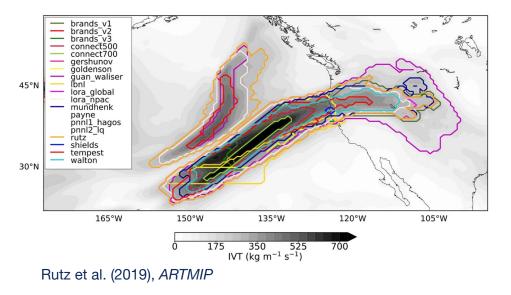
• RCP 8.5

o 2070-2100


Tierney et al. (2020), Science

High-resolution CESM provides an exciting opportunity for paleo-atmospheric river activity

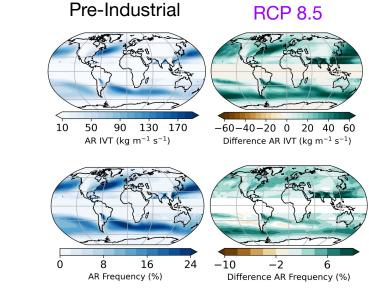
Modified from Liu et al. (2022), *JAMES*



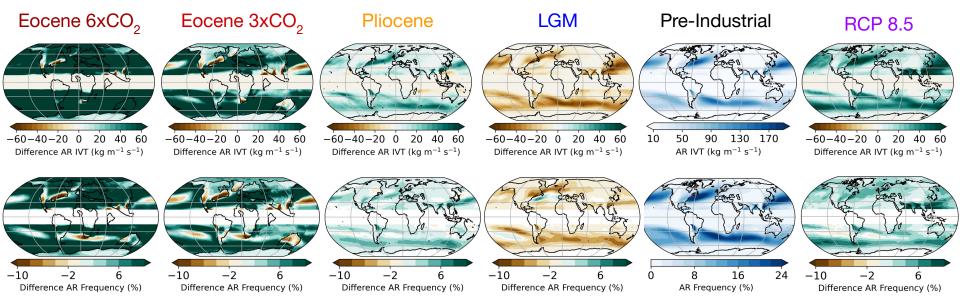
b) LR-ERA5

High vs. low horizontal resolution in CESM...

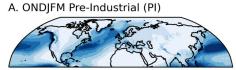
- Improves atmospheric river (AR) strength and response to large-scale climate modes
- May improve our understanding of the role of ARs in past hydroclimate change
- Potentially resolve proxy-model discrepancies in regional hydroclimate change



- ARs are typically identified using some IVT and shape criteria
- For the same AR, different tracking methods can provide very different AR footprints
- We use TempestExtremes and Lora_v2 methods to provide two different perspectives
 - Same criteria across all time intervals
 - Only TempestExtremes shown today



AR frequency and intensity tends to increase with higher atmospheric CO₂



AR frequency and intensity tends to increase with higher atmospheric CO_2

ARs are important drivers of total precipitation change in mid-latitudes

C. AMJJAS Pre-Industrial

B. ONDJFM AR Pre-Industrial

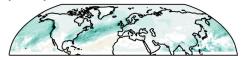
D. AMJJAS AR Pre-Industrial

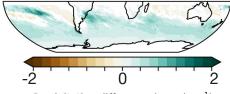
2

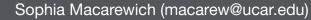
Precipitation (mm day $^{-1}$)

6

0




K. AMJJAS

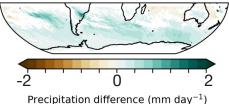

J. ONDJFM AR RCP 8.5-PI

L. AMJJAS AR

Precipitation difference (mm day⁻¹)

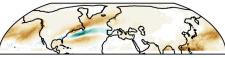
ARs are important drivers of total precipitation change in mid-latitudes

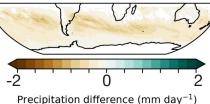
I. ONDJFM Pliocene-Pl


K. AMJJAS

J. ONDJFM AR Pliocene-Pl

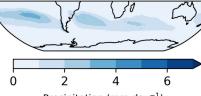
L. AMJJAS AR




K. AMJJAS

J. ONDJFM AR Last Glacial Maximum-PI

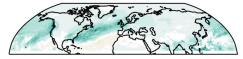
L. AMJJAS AR

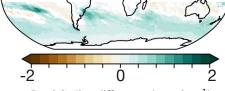

C. AMJJAS Pre-Industrial

B. ONDJFM AR Pre-Industrial

D. AMJJAS AR Pre-Industrial

Precipitation (mm day⁻¹)


I. ONDJFM RCP 8.5-PI


K. AMJJAS

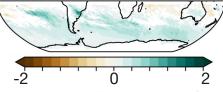
J. ONDJFM AR RCP 8.5-PI

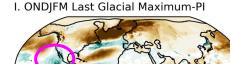
L. AMJJAS AR

Precipitation difference (mm day⁻¹)

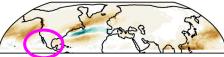
ARs are important drivers of total precipitation change in mid-latitudes

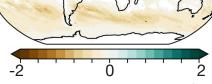
I. ONDJFM Pliocene-Pl

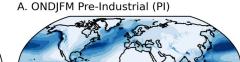

K. AMJJAS


J. ONDJFM AR Pliocene-Pl

L. AMJJAS AR


Precipitation difference (mm day $^{-1}$)


K. AMJJAS

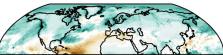

J. ONDJFM AR Last Glacial Maximum-PI

L. AMJJAS AR

Precipitation difference (mm day $^{-1}$)

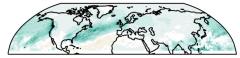

C. AMJJAS Pre-Industrial

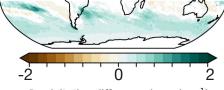
B. ONDJFM AR Pre-Industrial



D. AMJJAS AR Pre-Industrial

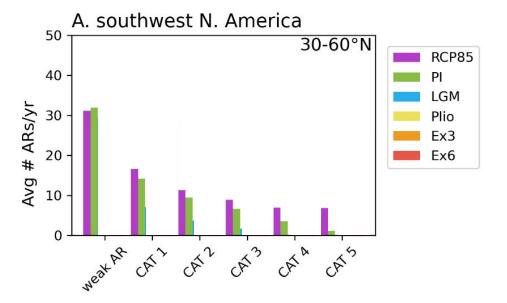
Precipitation (mm day⁻¹)


I. ONDJFM RCP 8.5-PI


K. AMJJAS

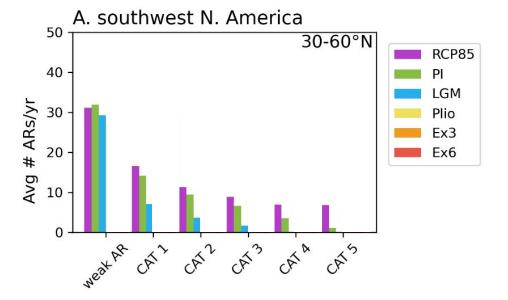
J. ONDJFM AR RCP 8.5-PI

L. AMJJAS AR

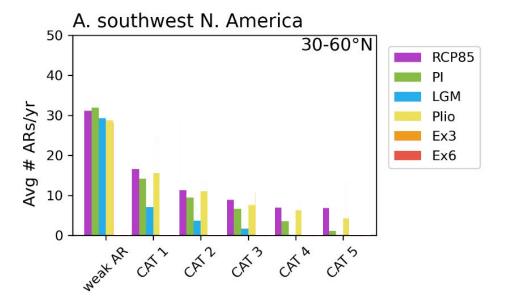


Precipitation difference (mm day⁻¹)

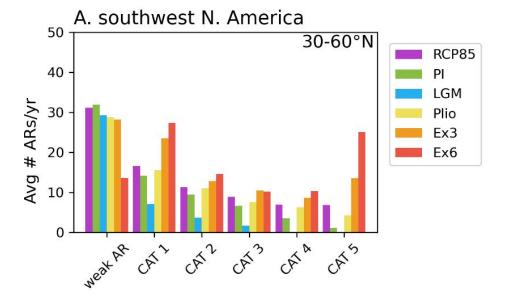
Wetter Pliocene western US Wetter LGM western US (not due to ARs)



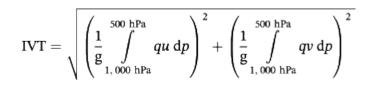
Max IVT	Duration of AR conditions (h)		
(kg m ⁻¹ s ⁻¹)	≤24	≥24–48	≥48
≤250	Not an AR	Not an AR	Not an AR
≥250–500	Weak AR	AR Cat I	AR Cat 2
≥500–750	AR Cat I	AR Cat 2	AR Cat 3
≥750–1,000	AR Cat 2	AR Cat 3	AR Cat 4
≥1,000–1,250	AR Cat 3	AR Cat 4	AR Cat 5
≥1,250	AR Cat 4	AR Cat 5	AR Cat 5
AR category scale	Assessment of beneficial vs hazardous impacts		
AR Cat I	Primarily beneficial		
AR Cat 2	Mostly beneficial, but also hazardous		
AR Cat 3	Balance of beneficial and hazardous		
AR Cat 4	Mostly hazardous, but also beneficial		
AR Cat 5	Primarily hazardous		



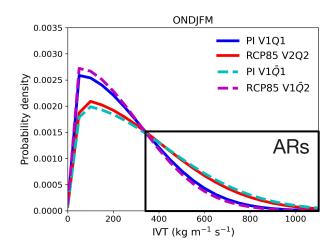
Max IVT	Durat	ons (h)	
(kg m ⁻¹ s ⁻¹)	≤24	≥24–48	≥48
≤250	Not an AR	Not an AR	Not an AR
≥250–500	Weak AR	AR Cat I	AR Cat 2
≥500–750	AR Cat I	AR Cat 2	AR Cat 3
≥750–1,000	AR Cat 2	AR Cat 3	AR Cat 4
≥1,000–1,250	AR Cat 3	AR Cat 4	AR Cat 5
≥1,250	AR Cat 4	AR Cat 5	AR Cat 5
AR category scale	Assessment of beneficial vs hazardous impacts		
AR Cat I	Primarily beneficial		
AR Cat 2	Mostly beneficial, but also hazardous		
AR Cat 3	Balance of beneficial and hazardous		
AR Cat 4	Mostly hazardous, but also beneficial		
AR Cat 5	Primarily hazardous		

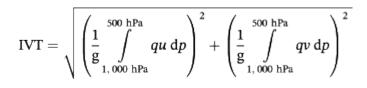


Max IVT	Durat	ons (h)	
(kg m ⁻¹ s ⁻¹)	≤24	≥24–48	≥48
≤250	Not an AR	Not an AR	Not an AR
≥250–500	Weak AR	AR Cat I	AR Cat 2
≥500–750	AR Cat I	AR Cat 2	AR Cat 3
≥750–1,000	AR Cat 2	AR Cat 3	AR Cat 4
≥1,000–1,250	AR Cat 3	AR Cat 4	AR Cat 5
≥1,250	AR Cat 4	AR Cat 5	AR Cat 5
AR category scale	Assessment of beneficial vs hazardous impacts		
AR Cat I	Primarily beneficial		
AR Cat 2	Mostly beneficial, but also hazardous		
AR Cat 3	Balance of beneficial and hazardous		
AR Cat 4	Mostly hazardous, but also beneficial		
AR Cat 5	Primarily hazardous		



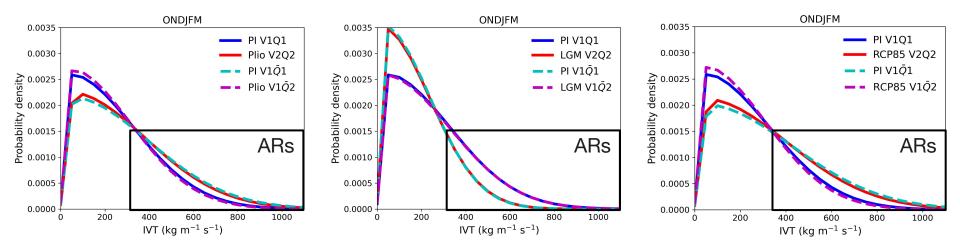
Max IVT	Duration of AR conditions (h)		
(kg m ⁻¹ s ⁻¹)	≤24	≥24–48	≥ 48
≤250	Not an AR	Not an AR	Not an AR
≥250–500	Weak AR	AR Cat I	AR Cat 2
≥500–750	AR Cat I	AR Cat 2	AR Cat 3
≥750–1,000	AR Cat 2	AR Cat 3	AR Cat 4
≥1,000–1,250	AR Cat 3	AR Cat 4	AR Cat 5
≥1,250	AR Cat 4	AR Cat 5	AR Cat 5
AR category scale	Assessment of beneficial vs hazardous impacts		
AR Cat I	Primarily beneficial		
AR Cat 2	Mostly beneficial, but also hazardous		
AR Cat 3	Balance of beneficial and hazardous		
AR Cat 4	Mostly hazardous, but also beneficial		
AR Cat 5	Primarily hazardous		



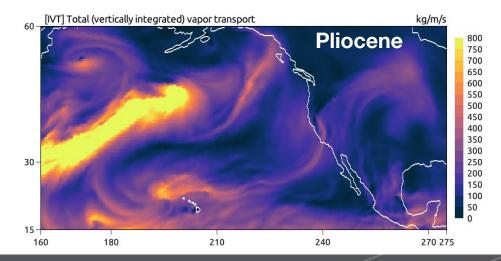


Windy (uv) and *wet (q)* flavors of ARs

 $IVT = \sqrt{\left(\frac{1}{g}\int_{1.000 \text{ hPa}}^{500 \text{ hPa}} qu \, dp\right)^2 + \left(\frac{1}{g}\int_{1,000 \text{ hPa}}^{500 \text{ hPa}} qv \, dp\right)^2} \qquad \text{Estimate contribution of wind vs. moisture to future}$ AR change by scaling present q by future mean q(Gao et al., 2015, *GRL*)



Windy (uv) and *wet (q)* flavors of ARs


 $IVT = \sqrt{\left(\frac{1}{g}\int_{1.000 \text{ hPa}}^{500 \text{ hPa}} qu \, dp\right)^2 + \left(\frac{1}{g}\int_{1,000 \text{ hPa}}^{500 \text{ hPa}} qv \, dp\right)^2} \qquad \text{Estimate contribution of wind vs. moisture to future}$ AR change by scaling present q by future mean q(Gao et al., 2015, GRL)

Preliminary Conclusions

- In general, AR frequency and intensity increases with higher CO₂
- In western N. America...
 - Landfalling AR intensity with higher CO₂ increases # damaging ARs
 - Increases in moisture, rather than winds, drive higher ARs under high CO_2
- High-resolution simulations have the potential to resolve some proxy-model discrepancies in reconstructing past hydroclimate change

