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Benthic Foraminifera

Gastaldello, M. E., Agnini, C., and Alegret, L.: Late Miocene to Early Pliocene benthic foraminifera from the Tasman Sea 
(International Ocean Discovery Program Site U1506), J. Micropalaeontol., 43, 1–35, https://doi.org/10.5194/jm-43-1-2024, 2024. 

Benthic foraminifera is one of the most reliable proxies of 
the deep time climates, and can be a good validation 
target for paleoclimate model simulations. 

However, most of the existing simulations cannot be 
compared to benthic foram d18O records directly, 
which requires:  
(i) isotope-enabled simulation  
(ii)equilibrated deep ocean
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Initial Conditions 
Acosta et al. (2022) 
w/ a 2-kyr spin-up

Dynamical Core 
Spectral Element (ne16)

Boundary Conditions 
The MioMIP1 setup

Model 
isotope-enabled CESM 
(iCESM) 1.3  
• Brady et al., 2019 
• Otto-Bliesner et al., in prep
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I.C. 
Acosta et al. (2022) 

w/ 2-kyr spin-up

Deep ocean equilibrium achieved after 5 kyrs
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The connection between GMST and BWT

Δ : MCO − PI
ΔGMST
ΔBWT

≈ 1.17
ΔGMST
ΔBWT

≈ 1.65

Evans et al., 2024
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Comparison with MioMIP1 (Burls et al, 2021)
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No AMOC;  
Deepwater formation over 

Pacific Sector of SO; 
SO MOC of ~16 Sv.

Deep ocean circulation
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e.g., Kim & ONeil (1997); Bemis et al. (1998); 
Pearson (2012); Marchitto et al. (2014); Hollis et al. (2019)

d18Osw to d18Oc conversion:
Tsw = a(δ18Oc − δ18Osw)2 + b(δ18Oc − δ18Osw) + c

δ18Oc = δ18Osw + f(Tsw; a, b, c)

Direct comparison to benthic foram calcite d18O
Marchitto et al. (2014)
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Direct comparison to benthic foram calcite d18O

5 benthic foram sites, 
each site has >= 200 samples during MCO (14-17 Ma) 

pid paleo_lat paleo_lon depth
0 DSDP574 1.144312 -124.468053 4561.0
1 ODP1171 -55.594620 148.692904 2150.0
2 ODP1237 -18.458773 -90.138832 3212.0
3 U1337 1.031639 -114.364687 4476.0
4 U1338 -0.114414 -109.091734 4210.0
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Three possible causes: 

• The foram data is not really the counterpart of our 
simulation.  

• The simulated ocean temperature is too warm. 

• The specified d18Osw is too negative (the effective 
ice sheet is too small).
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Direct comparison to benthic foram calcite d18O

more Antarctic ice sheet

less negative d18Osw

colder climate

Three possible causes: 

• The foram data is not really the counterpart of our 
simulation. 

• The simulated ocean temperature is too warm. 

• The specified d18Osw is too negative (the effective 
ice sheet is too small). 

• “deep heat but big ice”? (Modestou et al., 2020)
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‣ We revisited MCO leveraging a unique state-of-the-art iCESM 1.3 simulation ft. 
equilibrated deep ocean. 

‣ (!!) Long spin-up alone can introduce high-lat SST differences up-to 5°C. 

‣ (!) The equilibrated deep ocean also affects the ΔGMST:ΔBWT (Δ: MCO-PI). 

‣ (?) 3xCO2 might be too much for MCO, according to our benthic d18O evidence.
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Long spin-up alone → significant Antarctic SST differences up-to 5°C


