CESM Unified Postprocessing and Diagnostics (CUPiD)

Mike Levy and Teagan King June 11th, 2024 - SEWG Meeting


This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

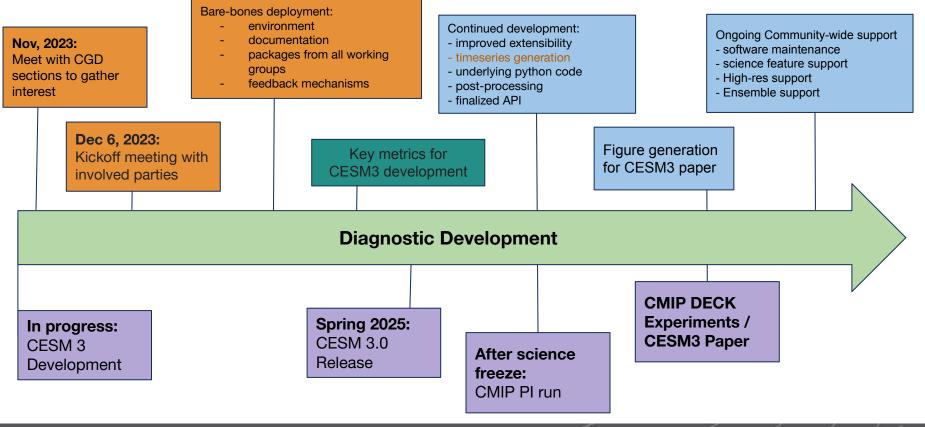
CUPiD Collaborators

- **AMP:** *Dani Coleman*, Cecile Hannay, *Brian Medeiros*, Christina McCluskey, *Jesse Nusbaumer, Justin Richling*
- CAS: John Fasullo, Adam Phillips, Isla Simpson
- CCR: Gary Strand
- **CSEG:** Brian Dobbins
- CESM: Dave Lawrence
- ESDS: Katie Dagon, Teagan King, Mike Levy
- ESMF: Bill Sacks
- GeoCAT (CISL): Orhan Eroglu, Katelyn FitzGerald, Anissa Zacharias
- OS: Anna Deppenmeier, Gustavo Marques, Lev Romashkov
- PPC: Dave Bailey, Kate Thayer-Calder, Feng Zhu
- TSS: Sam Levis, Will Wieder, Naoki Mizukami
- Students & Interns: Shivani Kumar, Hilary Lam, Ingrid Carlson

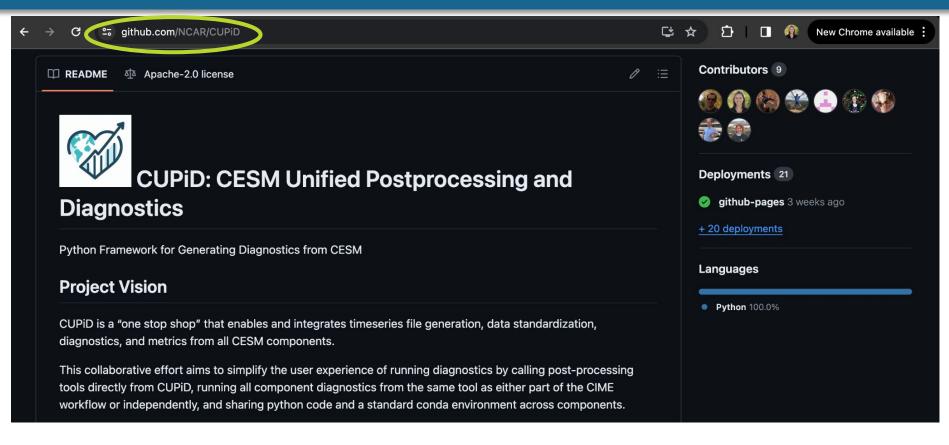
CESM Diagnostics and ESDS

PANGE

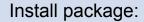
- CESM users were hitting the limits of NCL-based analysis
 - NCL is no longer being developed
 - Advantage to everyone replacing NCL with the same product
 - ESDS helped community find a solution
 - Pangeo stack: numpy, xarray, matplotlib, dask, etc
- Still had several independent efforts for analyzing CESM output
 - ADF, NBscuid, individuals writing one-off notebooks
- Next step: build a common framework
 - CESM Unified Postprocessing and Diagnostics (CUPiD)


CUPiD is a "one stop shop" that enables and integrates timeseries file generation, data standardization, diagnostics, and metrics from all CESM components.

This collaborative effort aims to simplify the user experience of running diagnostics by calling post-processing tools directly from CUPiD, running all component diagnostics from the same tool as either part of the CIME workflow or independently, and sharing python code and a standard conda environment across components.



Anticipated Timeline



CUPiD Repository

How Do I Set Up CUPiD?

- \$ git clone --recurse-submodules https://github.com/NCAR/CUPiD.git
- \$ cd CUPiD
- \$./manage_externals/checkout_externals

```
Build the CUPiD environments:
```

```
$ mamba env create -f environments/dev-environment.yml
$ mamba env create -f environments/cupid-analysis.yml
```


How Can I Use CUPiD?

Provided example:

- \$ cd examples/coupled model
- \$ cupid-run # runs notebooks (from cupid-dev environment)
- \$ cupid-build # builds website

Run on new cases: modify <u>config.yml</u> file

- \$ cupid-run # from directory containing config.yml
- \$ cupid-build

- Mechanism for running notebooks in parallel
 - Timeseries file generation
- Examples for most components
- Command line arguments
 - Common environment
- **Documentation**

Coming Soon

- Provide quick metrics for CESM3 development runs
- \neg Run python scripts in addition to notebooks
- Run on machines other than Derecho / Casper
- ☐ Run as part of CESM Workflow
- Run notebooks that import other diagnostic packages (ILAMB, etc)

Technical Details: Current & Proposed implementation

- Overview of configuration (YAML) file
- Mechanism for running notebooks in parallel
- Timeseries file generation

Data Sources

data_sources:

sname is any string used as a nickname for this configuration. It will be
used as the name of the folder your computed notebooks are put in
sname: quick-run

run_dir is the path to the folder you want
all the files associated with this configuration
to be created in
run_dir: .

nb_path_root is the path to the folder that cupid will
look for your template notebooks in. It doesn't have to
be inside run_dir, or be specific to this project, as
long as the notebooks are there
nb_path_root: ../nblibrary

computation_config:

default_kernel_name is the name of the environment that
the notebooks in this configuration will be run in by default.
It must already be installed on your machine. You can also
specify a different environment than the default for any
notebook in NOTEBOOK CONFIG

default_kernel_name: cupid-analysis


```
# Notebooks and Parameters #
# All parameters under global_params get passed to all the notebooks
global_params:
 CESM_output_dir: _glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing
 lc_kwargs:
   threads_per_worker: 1
timeseries:
 num_procs: 8
 ts done: [False]
 overwrite_ts: [False]
 case_name: 'b.e23_alpha16b.BLT1850.ne<u>30_t232.054</u>'
 atm:
   vars: DACTNI', 'ACTNL', 'ACTREI', 'ACTREL', 'AODDUST']
   derive_vars: [] # {'PRECT': ['PRECL', 'PRECC'], 'RESTOM': ['FLNT', 'FSNT']}
```


hist_str: 'h0'
start_years: [2]
end_years: [102]
level: 'lev'

compute_notebooks:

- # This is where all the notebooks you want run and their # parameters are specified. Several examples of different # types of notebooks are provided.
- # The first key (here simple_no_params_nb) is the name of the # notebook from nb_path_root, minus the .ipynb

infrastructure: index: parameter_groups: none: {}

atm:

adf_quick_run: parameter_groups: none: adf_path: ../../../externals/ADF config_path: . config_fil_str: "config_f.cam6_3_119.FLTHIST_ne30.r328_gamma0.33_soae.001.yaml"

See https://jupyterbook.org/en/stable/structure/configure.html for # complete documentation of Jupyter book construction options

format: jb-book

All filenames are notebook filename without the .ipynb, similar to above

root: infrastructure/index # root is the notebook that will be the homepage for the book
parts:

Parts group notebooks into different sections in the Jupyter book
table of contents, so you can organize different parts of your project.

- caption: Atmosphere

Each chapter is the name of one of the notebooks that you executed # in compute_notebooks above, also without .ipynb chapters:

- file: atm/adf_quick_run

Requirement: Dask-based parallelization (Pangeo stack)

- 1. Current Implementation
 - a. User requests resources upfront
 - b. Parallelize with dask's LocalCluster

PRO:

 Portable across computers regardless of queue manager CON:

 Requires running notebooks sequentially, and not all notebooks will use all resources

- 2. Desired Implementation
 - Use CESM machine info to choose Cluster
 - ➤ May change CUPiD externals / interaction with CESM

Current Timeseries File Generation

ADF / lib / adf_diag.py		
Code Blame 11	В	
339		
340 #####	+###	
341		CUPiD / cupid / timeseries.py
342 ∨ def c	<pre>reate_time_series(self, base</pre>	
343		👔 TeaganKing Include GitHub Actions (#98) 🚥 🗸
344 G	enerate time series version	
345		
246		Code Blame 423 lines (372 loc) · 16.8 KB
		1 """
		Timeseries generation tool adapted from ADF for general CUPiD use.
		3 """

Cons: lightweight tool that doesn't handle all edge cases

Desired Timeseries File Generation

Call an external tool if time series generation is desired

	NCAR / PyReshaper		QT	Type 🕖 to search	
> Code	⊙ Issues 1 1 Pull requests ⊙ Actions ⊞ Projec	s 🖽 Wiki 😲 Security	🗠 Insights		Something like
	PyReshaper Public			⊙ Watch 13 ▼	PyReshaper, but still maintained
	🐉 main 👻 🤔 1 Branch 🛇 21 Tags	Q Go to file	t Add file 👻	<> Code •	
	Skevin Paul Try newer setup-miniconda		913bc93 · 3 years ago	🕚 822 Commits	

Summary

- Work is on-going towards a portable and extensible CESM postprocessing / diagnostics package
- We welcome feedback, suggestions, testers & contributors
- Current development version is available!
- Bonus slides show screenshots of generated web page

Thank You!

4 🛣 🖸 🔘

Example project

¥ + K

Q Search

Atmosphere

ADF Diagnostics In Jupyter

Ocean

Analysis of Surface Fields

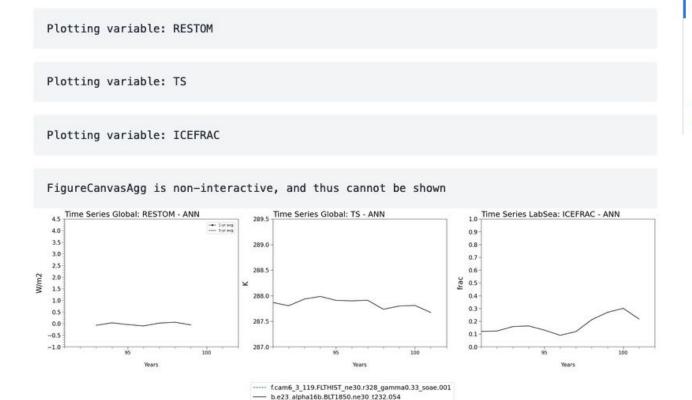
Land

Simple example comparing land variables from two simulations

Sea Ice

Sea Ice Diagnostics for two CESM3 runs

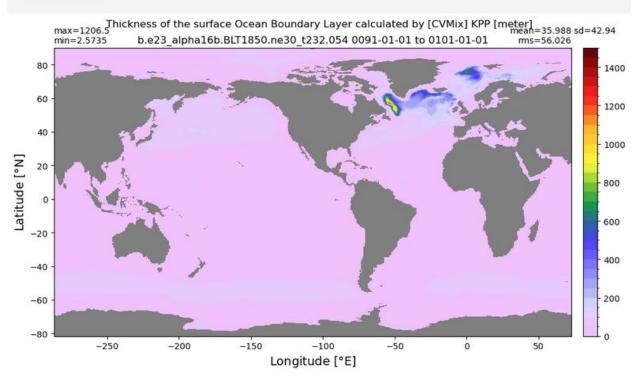
Index homepage!


```
# Parameters
```

Ξ

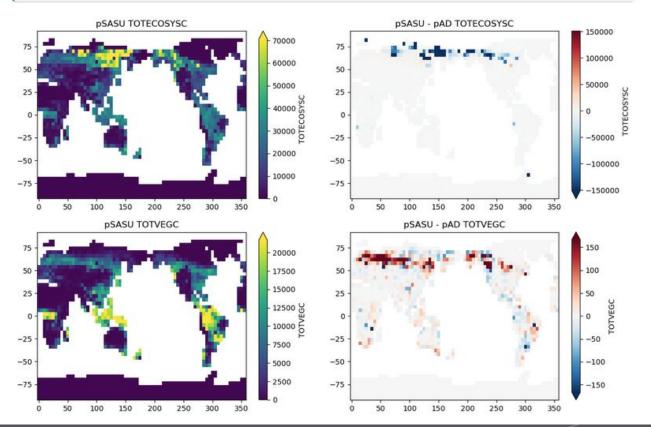
```
CESM_output_dir = "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_outpu
lc_kwargs = {"threads_per_worker": 1}
serial = False
subset_kwargs = {}
product = "/glade/work/mlevy/codes/CUPiD/examples/coupled_model/computed_notebooks/quick-run
```

ADF Diagnostics In Jupyter


Exploration of the Output Data

Let's grab the case names, time series locations, variable defaults dictionary and climo years Time Series Plotting Functions **Plot the time series!**

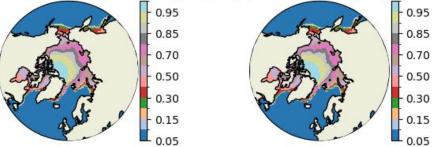
Time elasped: 0:00:13.230260

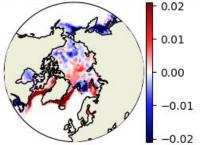

Plotting...

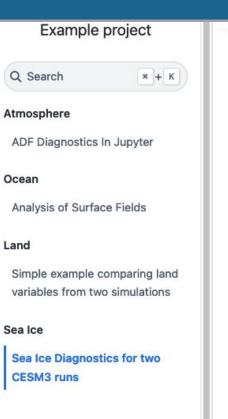
Mixed layer depth

Boundary layer depth

Quickplots of pSASU results & difference from pAD


lower soil C stocks at high latitues


plot_diff(field1, field2, levels, case1, case2, title, "N", TLAT, TLON)


Sea Ice Concentration

g.e23_a16g.GJRAv4.TL319_t232_hycom1_N75.202330656g.GJRAv4.TL319_t232_zstar_N65.2024.004

g.e23_a16g.GJRAv4.TL319_t232_zstar_N65.2024.004-g.e23_a16g.GJRAv4.TL319_t232_hycom1_N75.2024.005

