
This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

Implementing CI/CD Philosophy 
for CTSM

The tale of b4b-dev

June 11th, 2024

Erik Kluzek, 
CGD/TSS/CSEG SE



Outline

• Automation with CI/CD is awesome!
• Automating testing with CI/CD is something we should all do
• I’m NOT talking about Automated testing here though!
• CI/CD originally was a concept about how to build software
• I’m going to talk about that and how we adopted some practices that help 

move us towards the philosophy of CI/CD
• The main one is our new b4b-dev branch using a git-flow workflow
• Which was a team effort
• I’ll go through some history of that effort
• Another practice is our “Near term Priorities” Project Board
• These have both been positive
• The process in and of itself was a team building exercise
• It also brought our team to have ownership of our process
• And allowed us to tweak the process as needed



Automation With CI/CD Is Awesome!
Something we need/will do more of…

Automated testing means:
● Adopting SE industry best 

practices
● We leverage the work we do with 

tools
● Increase our output
● Do things faster
● Catch problems sooner
● Find integration problems rapidly
● Standardizes our software 

process



I’m Not Talking About Automated Testing Here Though

History:
● 1984 C/I term coined by Grady 

Booch
● 1987 Kent Beck X-programming
● 2006 Martin Fowler article
● Now – commit to same branch 

sub-daily which invokes 
automated testing

C/I Philosophy Goals for CTSM:
● Smaller PR’s/tags
● Commits more often
● Fix little problems quicker
● Integrating together on the shared 

branch more often



John Stevens Definition of C/I

Continuous integration (CI) is a software engineering practice 
where members of a team integrate their work with increasing 
frequency. In keeping with CI practice, teams strive to integrate at 
least daily and even hourly, approaching integration that occurs 
“continuous-ly.”

https://www.synopsys.com/blogs/software-sec
urity/agile-cicd-devops-difference.html



The Main One Is Our New b4b-dev Branch Using A Git-Flow Workflow

Current:
● I work on tags for about a month
● Tags come into the group about 

weekly
● I add miscellaneous things to tags I’m 

working on
Pain points:

● Larger tags make it hard to review
● “Adding things” can be problematic
● Bigger tags mean more integration 

updates/problems/conflict with other 
work

● Tag queuing slows down development
● Tags require ChangeLog/baseline 

creation which disincentives adding 
something small to a new tag

New:
● “Big” or answer changing things 

still go to master
● “Miscellaneous things” and quick 

fixes can go to b4b-dev branch
● b4b-dev branch merged to master 

every two weeks
● Easier to review smaller changes 

on b4b-dev
● Small PR’s go in without new 

baselines and ChangeLog
● b4b-dev is updated for the dev 

group more often so closer to C/I
● Still testing using our test lists



Eliminate Tagging Bottleneck for Simple Changes



Team Effort

Adrianna 
Foster

Keith 
Oleson

Greg Lemieux
FATES LBL

Matvey 
Debolskiy
NorESM

Ryan Knox
FATES LBL

Sam Levis

Sam Rabin

Will Wieder
LMWG Chair

The CTSM SE Team that Meets Thursday 
Mornings



History

We should look 
into the git flow 
workflow

X Infinity…

We should start 
listening to 
Adrianna..

October…

Start 
document

Iterate on the 
document as a 
team. Over a few 
months…



 Results we’ve Seen

• Fix for “run_neon” went in a matter of hours vs weeks
• 24 PR’s came in under 6 tags on master
• Process is easy – “turn the crank”
• Take turns
• These PR’s easier to code review



Important Takeaways

● Working on software process is critically important
● When people start, educate them in what is currently done – 

later listen to them on how to improve
● Listen to everyone on your team – especially when you think 

you disagree
● Did I not listen to Adrianna because of gender/age/experience 

bias? Keep thinking about that
● Everyone contributes to the process:

○ Builds ownership, buy in, and personal commitment to the process
○ Builds in a way to continuously improve
○ Gets everyone thinking about pain points and how to reduce them
○ Gets everyone working the same way
○ Helps spinning up new people in the process



Listen to the Team



Near Term Priorities Github Board

Problems!
● Making good SE time estimates is 

hard!
● Making bad estimates is demoralizing
● We don’t do it enough
● We haven’t tracked our accuracy
● Continually need to make estimates 

to plan and coordinate work
● Pressure to “get things done” adds to 

stress, bad estimates, and bad 
process

● Prioritization is difficult – making sure 
we are working on the most important 
things

● Working on too many things at once – 
means everything is too slow and not 
efficient

● Long term planning is too difficult to 
have a handle on

Solutions?:
● Let’s use estimation methods from the 

SE industry
● Recognize estimates vary with actual – 

track minimum, mean, and maximum 
guesses (a good estimate is just within 
the range)

● Average of estimates over time being 
near reality means estimates are useful

● Let’s concentrate on near-term goals – 
rather than long term

● Constantly assess our prioritization is 
correct

● Practice making estimates for near-term 
goals, track and then assess afterwards 
to improve over time

● Github “Team Planning Template”?

https://github.com/orgs/ESCOMP/projects/25



Near Term – 3 week Sprints

● Continually assess priorities
● Plan next cycle:

○ Requirements
○ Design
○ Implementation
○ Testing
○ Tag release

● Evaluate previous cycle
● See how the estimates turned out



What does it look like? (current planning)



Previous Sprint (Review)



Future Sprint (Planning)



Takeaways for All

● Think about our SE processes in your teams!
● Work together to develop and improve your process
● Listen careful to ALL voices
● Try new practices and iterate on them
● Develop practices that address these:

○ Prioritization!
○ Planning for short cycles
○ Working on current cycle
○ Analysis of the previous cycle
○ Keep redoing above on short cycles

C



References

Steven, J. (2018, Mar 18) What’s the difference between agile, CI/CD, and 
DevOps?, Synopsys 
https://www.synopsys.com/blogs/software-security/agile-cicd-devops-difference.ht
ml
CTSM SE Team (2024): CTSM b4b-dev Dev Branch, CTSM Drive 
https://docs.google.com/document/d/17quJfi5trKxoNtY-QOkxwfG-iLcKRROy8HOl8
0SIpJ0
Porto, P. (2018, Feb 26) 4 branching workflows for Git, Medium
medium.com/@patrickporto/4-branching-workflows-for-git-30d0aaee7bf
Beck, K. & Andres C. Extreme Programming Explained: Embrace Change (The XP 
Series) (2nd Edition). Addison-Wesley
https://www.amazon.com/Extreme-Programming-Explained-Embrace-Change/dp/0
321278658
Fowler, M. (2024, Jan 18, update from 2001) Continuous Integration, MartinFowler
https://martinfowler.com/articles/continuousIntegration.html

https://www.synopsys.com/blogs/software-security/agile-cicd-devops-difference.html
https://www.synopsys.com/blogs/software-security/agile-cicd-devops-difference.html
https://docs.google.com/document/d/17quJfi5trKxoNtY-QOkxwfG-iLcKRROy8HOl80SIpJ0
https://docs.google.com/document/d/17quJfi5trKxoNtY-QOkxwfG-iLcKRROy8HOl80SIpJ0
http://medium.com/@patrickporto/4-branching-workflows-for-git-30d0aaee7bf
https://www.amazon.com/Extreme-Programming-Explained-Embrace-Change/dp/0321278658
https://www.amazon.com/Extreme-Programming-Explained-Embrace-Change/dp/0321278658
https://martinfowler.com/articles/continuousIntegration.html

