
This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

Implementing CI/CD Philosophy 
for CTSM

The tale of b4b-dev

June 11th, 2024

Erik Kluzek, 
CGD/TSS/CSEG SE



Outline

• Automation with CI/CD is awesome!
• Automating testing with CI/CD is something we should all do
• I’m NOT talking about Automated testing here though!
• CI/CD originally was a concept about how to build software
• I’m going to talk about that and how we adopted some practices that help 

move us towards the philosophy of CI/CD
• The main one is our new b4b-dev branch using a git-flow workflow
• Which was a team effort
• I’ll go through some history of that effort
• Another practice is our “Near term Priorities” Project Board
• These have both been positive
• The process in and of itself was a team building exercise
• It also brought our team to have ownership of our process
• And allowed us to tweak the process as needed



Automation With CI/CD Is Awesome!
Something we need/will do more of…

Automated testing means:
● Adopting SE industry best 

practices
● We leverage the work we do with 

tools
● Increase our output
● Do things faster
● Catch problems sooner
● Find integration problems rapidly
● Standardizes our software 

process



I’m Not Talking About Automated Testing Here Though

History:
● 1984 C/I term coined by Grady 

Booch
● 1987 Kent Beck X-programming
● 2006 Martin Fowler article
● Now – commit to same branch 

sub-daily which invokes 
automated testing

C/I Philosophy Goals for CTSM:
● Smaller PR’s/tags
● Commits more often
● Fix little problems quicker
● Integrating together on the shared 

branch more often



John Stevens Definition of C/I

Continuous integration (CI) is a software engineering practice 
where members of a team integrate their work with increasing 
frequency. In keeping with CI practice, teams strive to integrate at 
least daily and even hourly, approaching integration that occurs 
“continuous-ly.”

https://www.synopsys.com/blogs/software-sec
urity/agile-cicd-devops-difference.html



The Main One Is Our New b4b-dev Branch Using A Git-Flow Workflow

Current:
● I work on tags for about a month
● Tags come into the group about 

weekly
● I add miscellaneous things to tags I’m 

working on
Pain points:

● Larger tags make it hard to review
● “Adding things” can be problematic
● Bigger tags mean more integration 

updates/problems/conflict with other 
work

● Tag queuing slows down development
● Tags require ChangeLog/baseline 

creation which disincentives adding 
something small to a new tag

New:
● “Big” or answer changing things 

still go to master
● “Miscellaneous things” and quick 

fixes can go to b4b-dev branch
● b4b-dev branch merged to master 

every two weeks
● Easier to review smaller changes 

on b4b-dev
● Small PR’s go in without new 

baselines and ChangeLog
● b4b-dev is updated for the dev 

group more often so closer to C/I
● Still testing using our test lists



Eliminate Tagging Bottleneck for Simple Changes



Team Effort
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History

We should look 
into the git flow 
workflow

X Infinity…

We should start 
listening to 
Adrianna..

October…

Start 
document

Iterate on the 
document as a 
team. Over a few 
months…



 Results we’ve Seen

• Fix for “run_neon” went in a matter of hours vs weeks
• 24 PR’s came in under 6 tags on master
• Process is easy – “turn the crank”
• Take turns
• These PR’s easier to code review



Important Takeaways

● Working on software process is critically important
● When people start, educate them in what is currently done – 

later listen to them on how to improve
● Listen to everyone on your team – especially when you think 

you disagree
● Did I not listen to Adrianna because of gender/age/experience 

bias? Keep thinking about that
● Everyone contributes to the process:

○ Builds ownership, buy in, and personal commitment to the process
○ Builds in a way to continuously improve
○ Gets everyone thinking about pain points and how to reduce them
○ Gets everyone working the same way
○ Helps spinning up new people in the process



Listen to the Team



Near Term Priorities Github Board

Problems!
● Making good SE time estimates is 

hard!
● Making bad estimates is demoralizing
● We don’t do it enough
● We haven’t tracked our accuracy
● Continually need to make estimates 

to plan and coordinate work
● Pressure to “get things done” adds to 

stress, bad estimates, and bad 
process

● Prioritization is difficult – making sure 
we are working on the most important 
things

● Working on too many things at once – 
means everything is too slow and not 
efficient

● Long term planning is too difficult to 
have a handle on

Solutions?:
● Let’s use estimation methods from the 

SE industry
● Recognize estimates vary with actual – 

track minimum, mean, and maximum 
guesses (a good estimate is just within 
the range)

● Average of estimates over time being 
near reality means estimates are useful

● Let’s concentrate on near-term goals – 
rather than long term

● Constantly assess our prioritization is 
correct

● Practice making estimates for near-term 
goals, track and then assess afterwards 
to improve over time

● Github “Team Planning Template”?

https://github.com/orgs/ESCOMP/projects/25



Near Term – 3 week Sprints

● Continually assess priorities
● Plan next cycle:

○ Requirements
○ Design
○ Implementation
○ Testing
○ Tag release

● Evaluate previous cycle
● See how the estimates turned out



What does it look like? (current planning)



Previous Sprint (Review)



Future Sprint (Planning)



Takeaways for All

● Think about our SE processes in your teams!
● Work together to develop and improve your process
● Listen careful to ALL voices
● Try new practices and iterate on them
● Develop practices that address these:

○ Prioritization!
○ Planning for short cycles
○ Working on current cycle
○ Analysis of the previous cycle
○ Keep redoing above on short cycles

C
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