Recent ADF developments

and collaboration with CUPiD

Jesse Nusbaumer, Software Engineer, NCAR/CGD

June 11, 2024

Credits

Lead roles

- Justin Richling
- Dani Coleman
- Brian Medeiros

ADF Updates

NCAR

UCAR

Supporting cast

- Rebecca Buchholz
- Julie Caron
- Will Chapman
- Andrew Gettelman
- Cecile Hannay
- Shawn Honomichl
- Teagan King
- Mike Levy
- Dan Marsh
- Lev Romashkov
- Isla Simpson
- Ben Stephens
- Adam Phillips
- Feng Zhu

Background (AMWG diagnostics)

AMWG Diagnostics Package f.e21.FWscHIST.ne30_L48_BL10_cam6_3_035.tphysac_reorder_zm2_clubb-exp2.001.hf2 and

OBS data (info)

NCAR ADF Updates

means

means

UCAR

Background (AMWG diagnostics)

AMWG Diagnostics Package

f.e21.FWscHIST.ne30_L48_BL10_cam6_3_035.tphysac_reorder_zm2_clubb-exp2.001.hf2

and OBS data (<u>info</u>)

Set Description

1 <u>Tables</u> of ANN, DJF, JJA, global and regional means and RMSE.

2 Line plots of annual implied northward

transports.

3 <u>Line plots</u> of DJF, JJA and ANN zonal means 4 Vertical <u>contour plots</u> of DJF, JJA and ANN

zonal means

4a Vertical (XZ) <u>contour plots</u> of DJF, JJA and ANN meridional means

5 Horizontal <u>contour plots</u> of DJF, JJA and ANN means

6 Horizontal <u>vector plots</u> of DJF, JJA and ANN means

7 Polar <u>contour and vector plots</u> of DJF, JJA and ANN means

8 Annual cycle <u>contour plots</u> of zonal means 9 Horizontal <u>contour plots</u> of DJF-JJA

differences

10 Annual cycle line plots of global means

11 Pacific annual cycle, Scatter plot <u>plots</u>

12 Vertical profile <u>plots</u> from 17 selected stations

13 Cloud simulators plots

14 Taylor Diagram <u>plots</u>

15 Annual Cycle at Select Stations plots

16 Budget Terms at Select Stations plots

WAWG Set Description

1 <u>Tables</u> of regional min, max, means 2 Seasonal cycle <u>line plots</u> of SP, SM, EQ, NM, NP zonal means (vertical log scale) 3 Vertical <u>season cycle plots</u> of SP, SM, EQ, NM, NP zonal means (vertical log scale) 4 Vertical <u>contour plots</u> of JUN, DEC, DJF, MAM, JJA, SON and ANN zonal means (vertical log scale)

A collection of NCL scripts wrapped in a (C-)Shell Script. In other words unsustainable legacy code.

NCAR ADF Updates

Background (AMWG diagnostics)

AMWG Diagnostics Package

f.e21.FWscHIST.ne30_L48_BL10_cam6_3_035.tphysac_reorder_zm2_clubb-exp2.001.hf2

and OBS data (<u>info</u>)

Set Description

1 <u>Tables</u> of ANN, DJF, JJA, global and regional means and RMSE.

2 Line plots of annual implied northward

transports.

3 <u>Line plots</u> of DJF, JJA and ANN zonal means 4 Vertical <u>contour plots</u> of DJF, JJA and ANN

zonal means

4a Vertical (XZ) <u>contour plots</u> of DJF, JJA and ANN meridional means

5 Horizontal <u>contour plots</u> of DJF, JJA and ANN means

6 Horizontal <u>vector plots</u> of DJF, JJA and ANN means

7 Polar <u>contour and vector plots</u> of DJF, JJA and ANN means

8 Annual cycle <u>contour plots</u> of zonal means 9 Horizontal <u>contour plots</u> of DJF-JJA

differences

10 Annual cycle line <u>plots</u> of global means

11 Pacific annual cycle, Scatter plot <u>plots</u> 12 Vertical profile <u>plots</u> from 17 selected stations

13 Cloud simulators plots

14 Taylor Diagram plots

15 Annual Cycle at Select Stations plots

16 Budget Terms at Select Stations plots

WAWG Set Description

 <u>Tables</u> of regional min, max, means
Seasonal cycle <u>line plots</u> of SP, SM, EQ, NM, NP zonal means (vertical log scale)
Vertical <u>season cycle plots</u> of SP, SM, EQ, NM, NP zonal means (vertical log scale)
Vertical <u>contour plots</u> of JUN, DEC, DJF, MAM, JJA, SON and ANN zonal means (vertical log scale)

ADF Updates

A collection of NCL scripts wrapped in a (C-)Shell Script. In other words unsustainable legacy code.

Also an incredible success, was used by scientists for over 20 years.

So we needed a replacement.

ADF Intro

The AMWG Diagnostics Framework (ADF) is a Python-based replacement for the original diagnostics, including an attempt to use widely-supported tools (e.g. xarray) and more modern software practices (e.g. OOP).

ADF Intro

NCAR | ADF Updates

New ADF features

High-top CAM/WACCM plots

ADF Updates

CAM-Chem

NCAR | ADF Updates

NOAA Model Diagnostic Task Force (MDTF) Process-Oriented Diagnostics Stratosphere-Troposphere Coupling: Annular Available by running ADF Stratosphere-Troposphere Coupling: Eddy Hea

	Fluxes
	Stratosphere-Troposphere Coupling: QBO ar
leale	ENSO stratospheric teleconnections
e Transition Diagnostics	Stratosphere-Troposphere Coupling:
cle of Precipitation	Stratospheric Ozone and Circulation
torm Track	Stratosphere-Troposphere Coupling:
cal Variance (EOF 500hPa Height)	Stratospheric Polar Vortex Extremes
edback Diagnostic	Stratosphere-Troposphere Coupling: Vertical
er Denth	Wave Coupling
agation and Amplitude	Surface Albedo Feedback
tra and Phasing	Surface Temperature Extremes and Distribut
onnections	Shape
ic Energy Diagnostic Package	
face Flux Diagnostic	TC MSE Variance Budget Analysis
on Buoyancy Diagnostic	Top Heaviness Metric
ave Sources Diagnostic Package	
ite	Tropical Cyclone Rain Rate Azimuthal Averag
ure-Evapotranspiration coupling	Tropical Pacific Sea Level
	Wavenumber-Frequency Spectra

DJF Blocking frequency

a: QBO and

Diagnostic

Blocking N Convectiv Diurnal Cy **Eulerian S** Extratropic

Forcing Fe Mixed Lay MJO Prop MJO Spec

MJO Teleo

BCC-CSM1.1 O CanESM2 OCNRM-CM5 O GFDL-CM3 O GFDL-ESM2G O GFDL-ESM2M PSL-CM5A-MR MIROCS MRI-CGCM3 NorESM1-M CBOLEXP1 AMP.00

How to call: PR in revision that adds controls to ADF yaml file, ability to make timeseries from a list of history files

diag cam climo:

```
hist str: [cam.h2,cam.h0]
```

diag_mdtf info:

```
mdtf run: True
```


Coupling with CUPiD

Current Status

- Example ADF Notebook implemented in CUPiD
- Time Series functionality pulled out into core CUPiD code so all components can use it (or so that it can be easily replaced with a better system).

Future Efforts

- Run ADF as a script instead of as a notebook (which should provide CUPiD full ADF functionality).
- Pull out additional ADF-internal routines (e.g. climatology generation) to make them available CUPiD-wide.

Future Design plans

- Reduce amount of class inheritance (instead make more independent classes that use each other).
- Implement more dask (distributed parallel computing) functionality
- Implement more automated unit testing

CUPiD-ADF

- Allow ADF to be configured via python dictionary (so CUPiD can control high-level configuration).
- Allow ADF to use provided computing/dask environment.

NCAR

ADF Updates

Final Thoughts

• CUPiD, ADF, or any new diagnostics system, needs more than a small FTE contribution in order to fully succeed, especially as it gets more mature (and complex).

- CUPiD, ADF, or any new diagnostics system, needs more than a small FTE contribution in order to fully succeed, especially as it gets more mature (and complex).
- Hackathons and Interns will not save the day.

- CUPiD, ADF, or any new diagnostics system, needs more than a small FTE contribution in order to fully succeed, especially as it gets more mature (and complex).
- Hackathons and Interns will not save the day.
- It is still unclear to me where to draw the line between what should be in a diagnostics package and what should just stay with a particular scientist/journal article.

- CUPiD, ADF, or any new diagnostics system, needs more than a small FTE contribution in order to fully succeed, especially as it gets more mature (and complex).
- Hackathons and Interns will not save the day.
- It is still unclear to me where to draw the line between what should be in a diagnostics package and what should just stay with a particular scientist/journal article.
- High resolution is going to just mess all our stuff up.

Thanks for listening!

Any Questions?

