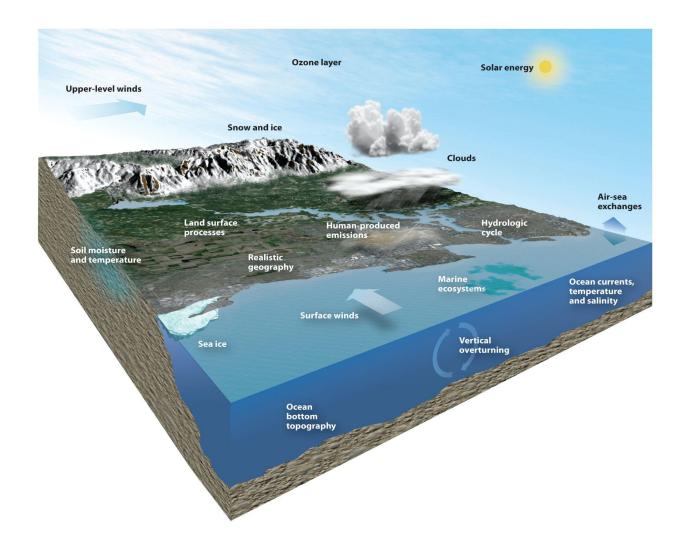
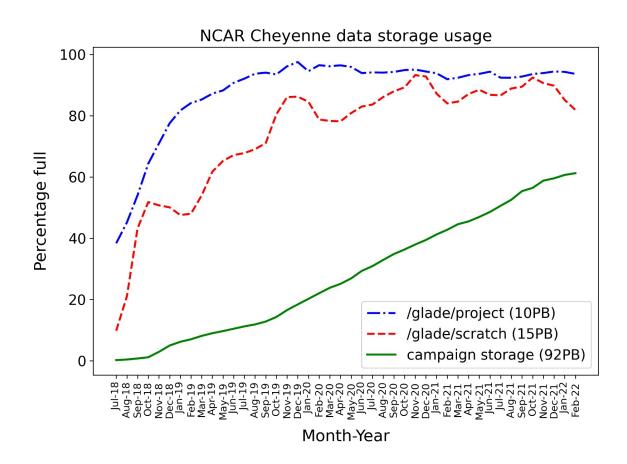
Training Statistical Models to Identify Optimal Lossy Compression Parameters

Alex Pinard¹, Allison Baker², Dorit Hammerling¹ ¹Colorado School of Mines, ²National Center for Atmospheric Research



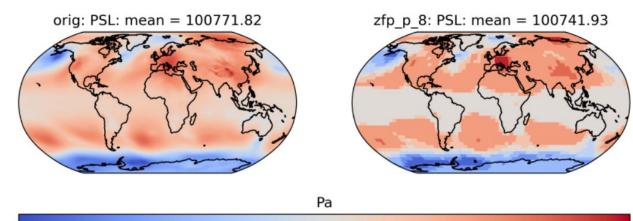
Data Storage for ESMs


- Climate simulations such as the Community Earth System Model (or CESM) have been used in large-scale projects such as the Coupled Model Intercomparison Project Phase 6.
- The total size of the output for an ensemble is massive (multiple petabytes).
- Goal: reducing the volume of these datasets without systematically altering them in any way that could affect scientific conclusions.
- We do not know in advance what kind of analysis the climate scientists will be performing on the data - or what the societal implications may be.

Reducing Data Size

- Lossless compression algorithms do not effectively reduce data volume of floating-point data.
- As a result, scientists are forced to constrain the size of their models.
- Using lossy compressors can greatly reduce the data size, but this comes at a cost of data quality – so a tradeoff must be made.

Compressing Data Safely

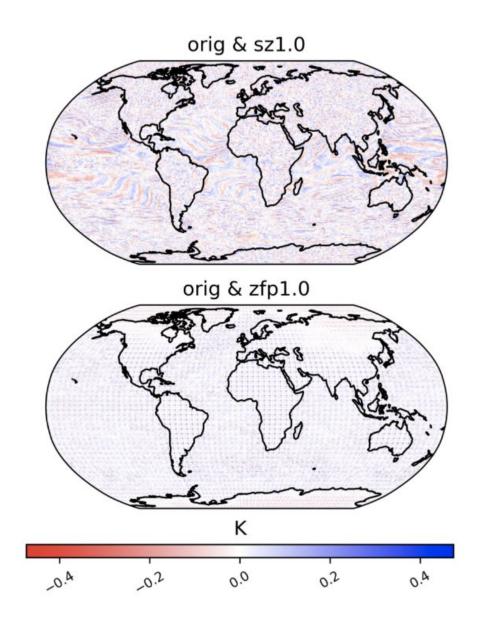

Scientists are understandably concerned about compression affecting the results of their analysis. We take the following steps to reduce the potential biases introduced in the data:

- Collaboration with compression algorithm creators to reduce artifacts in the data.
- Treating each climate variable individually to preserve **spatiotemporal** properties in a computationally efficient way.
- Working closely with application scientists, and providing tools so they can see the effects of compression on their analyses.

101000

102000

103000



204000

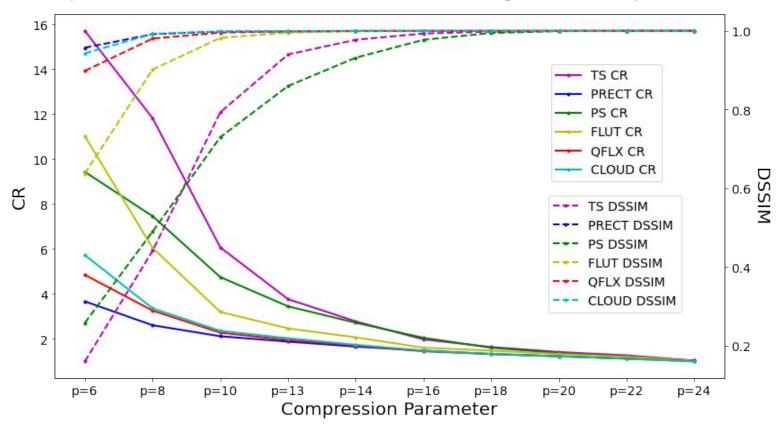
Evaluating Compression Quality

- Common compression metrics including RMSE, PSNR, and maximum error are not sufficient as they do not capture spatial or temporal dependencies that may exist in the errors. These may vary greatly between climate variables.
- Ensuring that compression does not adversely affect user analysis requires more **specialized metrics** that can be quickly computed on a dataset.

Example: Structural Similarity Index Measure

 Often scientific decisions are made based on visual inspection of data. The SSIM provides an estimate of similarity between two images by taking corresponding subsets of the images and evaluating luminance, contrast, and brightness. Then, these local SSIM values are averaged to reach the final mean SSIM value for comparing the images.

Definition (SSIM)


$$\begin{split} SSIM(\mathbf{x}_{i},\mathbf{y}_{i}) &= S_{1}(\mathbf{x}_{i},\mathbf{y}_{i})S_{2}(\mathbf{x}_{i},\mathbf{y}_{i}),\\ S_{1}(\mathbf{x}_{i},\mathbf{y}_{j}) &= \frac{(2\mu_{\mathbf{x}_{i}}\mu_{\mathbf{y}_{i}}+C_{1})}{(\mu_{\mathbf{x}_{i}}^{2}+\mu_{\mathbf{y}_{i}}^{2}+C_{1})}, \quad S_{2}(\mathbf{x}_{i},\mathbf{y}_{j}) &= \frac{(2\sigma_{\mathbf{x}_{i}\mathbf{y}_{i}}+C_{2})}{(\sigma_{\mathbf{x}_{i}}^{2}+\sigma_{\mathbf{y}_{i}}^{2}+C_{2})}.\\ SSIM(\mathbf{X},\mathbf{Y}) &= \frac{1}{M}\sum_{i=1}^{M}SSIM(\mathbf{x}_{i},\mathbf{y}_{i}) \end{split}$$

SSIM for Data (DSSIM)

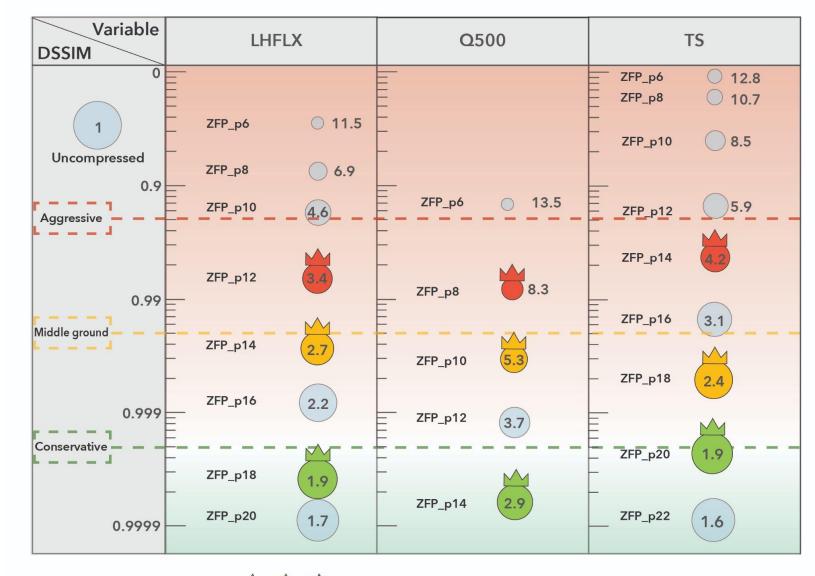
- The DSSIM calculation is similar to the SSIM, but operates directly on datasets.
- DSSIM works similarly to the SSIM, where 1 indicates that two datasets are identical.
- We can use a threshold for the DSSIM to determine likely visual indistinguishability.

Compression ratio (solid left) and mean DSSIM (dashed, right) versus compression level

Other Metrics

Overall goal: automate the compression process while preserving scientific integrity.

Additional compression metrics:


- Pearson Correlation Coefficient
- Spatial Relative Error
- Kolmogorov-Smirnov p-value
- Real Information Content

The choice of proper metrics may be highly dependent on the scientific application - these are a few examples.

pearson correlation coefficient	1
ks p-value	1
spatial relative error(% > 0.0001)	5.20833
spatial relative error (% > 0.001)	0
spatial relative error (% > 0.01)	0
max spatial relative error	0
data SSIM	0.999514

Determining "Optimal" Compression

- We determine "optimal" compression as the highest level of compression that passes the suite of metrics.
- The colored circles in the right figure indicate the dataset considered "optimal" under different metric threshold values, in this case for the DSSIM.
- This process is repeated for the other metrics and the lowest compression level over all metrics is taken as optimal.

CR = Compression Ratio

Optimal compression level

(CR) Non-optimal compression level

MINES.EDU

9

Practical Compression Challenges

- We have thousands of variables and large volumes of data.
- Each climate variable has different characteristics, and characteristics may vary between time slices. Additionally, new variables may be output at any time.
- To ensure the highest level of compression possible, we would need to try many different compression algorithms and parameter combinations separately for each individual time slice of output data.
- We are working on creating a statistical model that takes in data (or derived quantities thereof) of new or preexisting climate variables and predicts the ideal compression settings. This will be used as a baseline against which the compression can be further tweaked by application.

ldcpy

- To compute metrics on massive spatial datasets, we developed a Python software package called ldcpy.
- This package also allows us to calculate other derived quantities of the data, and provides visualization tools.
- Idcpy design goals:
 - Interoperability with the Pangeo software ecosystem
 - Easy interaction through Jupyter Notebooks
 - Suitability for a wide range of data volumes (single time slice to many years)
 - Supports datasets in NetCDF and object store data formats
 - Extensible analysis and plotting capabilities

C BUILD PASS	ING CODE	STYLE PASSING	COVERAGE	85%	DOCS	PASSING	PYPI	V0.16	
CONDA-FORGE	V0.16 DOI	10.5281 / ZEN	DDO.21540907	9					
Large Data	Compari	son for Pyth	ion						
ldcpy is a utility for gathering and plotting metrics from NetCDF or Zarr files using the Pangeo stack. It also contains a number of statistical and visual tools for gathering metrics and comparing Earth System Model data files.									
AUTHORS:	Alex Pinarc	l, Allison Baker, A	nderson Banih	irwe, Do	orit Hamı	merling			
COPYRIGHT: 2020 University Corporation for Atmospheric Research									
LICENSE:	Apache 2.0)							

Label spread by variable

- For each climate variable, we look at single time slices of the spatial field and classify them according to their optimal compression level.
- The result are optimal compression levels for every climate variable, with varying level distributions for each climate variable.

zfp_level	6	8	10	12	14	16	18	20	22	24	26	never passed
variable												
ABSORB	0	0	0	0	0	0	51	9	0	0	60	240
ANRAIN	360	0	0	0	0	0	0	0	0	0	0	C
ANSNOW	360	0	0	0	0	0	0	0	0	0	0	C
AODABS	0	0	0	0	5	47	7	1	0	0	60	240
AODDUST1	0	0	0	0	30	29	1	0	0	0	60	240
AODDUST2	60	0	0	0	0	0	0	0	0	0	60	240
AODDUST3	0	0	0	2	48	10	0	0	0	0	60	240
AODVIS	0	0	0	0	0	41	19	0	0	0	60	240
AQRAIN	360	0	0	0	0	0	0	0	0	0	0	(
AQSNOW	360	0	0	0	0	0	0	0	0	0	0	(
AREI	360	0	0	0	0	0	0	0	0	0	0	
AREL	360	0	0	0	0	0	0	0	0	0	0	
AWNC	360	0	0	0	0	0	0	0	0	0	0	
AWNI	360	0	0	0	0	0	0	0	0	0	0	
BURDENBC	0	0	0	0	3	239	117	1	0	0	0	
BURDENDUST	0	0	0	26	288	44	2	0	0	0	0)
BURDENPOM	0	0	0	0	14	268	78	0	0	0	0	
BURDENSEASALT	0	0	0	0	0	318	41	1	0	0	0	
CCN3	0	0	0	0	0	3	287	70	0	0	0	
CDNUMC	0	0	0	0	38	318	4	0	0	0	0	1
CLDTOT	0	0	0	0	188	172	0	0	0	0	0	
CO2_LND	0	0	0	0	0	0	0	0	0	0	0	36
CO2_OCN	0	0	0	0	0	0	0	0	0	0	0	36
DCQ	121	5	56	136	40	2	0	0	0	0	0	
DTCOND	202	4	27	86	41	0	0	0	0	0	0	
DTV	359	0	1	0	0	0	0	0	0	0	0	
EXTINCT	0	0	0	0	0	0	51	9	0	0	60	24
FICE	334	1	2	11	12	0	0	0	0	0	0	
FLDS	0	0	0	0	0	0	328	32	0	0	0	(
FLNS	0	0	0	0	0	360	0	0	0	0	0	(
FLNSC	0	0	0	0	0	0	360	0	0	0	0	
FLNTC	0	0	0	0	0	0	7	353	0	0	0	
FLUTC	0	0	0	0	0	0	3	353	4	0	0	

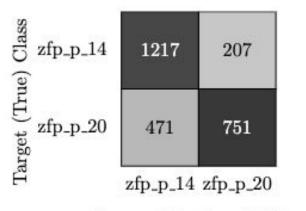
MINES.EDU

Classifying Datasets

- The approach described previously only works for small datasets.
- We can treat this as a supervised learning problem and try to model the optimal level based on dataset features.
- The model is intended to be metric-agnostic.

Climate Variables		Algorithm	Compression Rate	
		ZFP	1x (none)	
Net Shortwave Radiation	The second of	ZFP	1.25x (~lossless)	
	- Aspert /	ZFP	2x	
	and the second s			
Precipitation Rate		ZFP	100x	
	/ `*	SZ	1x (none)	
	1	SZ	1.25x (~lossless)	
Relative Humidity	The I a	SZ	2x	
	1 1 1	SZ	100x	
	N. 1 1 1 *	BIT-GROOMING	1x (none)	
		BIT-GROOMING	1.25x (~lossless)	
Sea Level Pressure		BIT-GROOMING	2x	
	1.1	· · · · · · ·		
		BIT-GROOMING	100x	
Surface Temperature		OTHERS	1x (none)	
		OTHERS	1.25x (~lossless)	
		OTHERS	2x	
Vertical Heat Flux	4			
		OTHERS	100x	

Generating features using Idcpy


- We use explicit feature models, such as random forest models, to predict optimal compression levels and indicate which features are relevant to making predictions.
- We also use implicit feature models, in this case CNNs, as they are designed to capture regularities in image data.

climate variable	mean importance	standard deviation
ns_con_var	0.096	0.050
ew_con_var	0.11	0.065
w_e_first_differences	0	0
w_e_first_differences_max	0.11	0.043
n_s_first_differences	0.055	0.042
n_s_first_differences_max	0.053	0.041
FFT_max_horizontal	0.049	0.028
FFT_horizontal_ratio	0.056	0.045
FFT_max_vertical	0.049	0.022
FFT_vertical_ratio	0.051	0.042
magnitude_range	0.041	0.026
magnitude_range_ew	0.066	0.044
magnitude_range_ns	0.016	0.014
entropy	0.11	0.048
real_information	0.14	0.082

Early Results

- Results using basic statistical learning models are mixed.
- Higher accuracy for predicting a new timeslice of a preexisting climate variable versus predicting a timeslice for a previously unforeseen climate variable.
- Major issues: difficult to discern additional features, require more data to fully explore the feature space than the 183 variables we have.

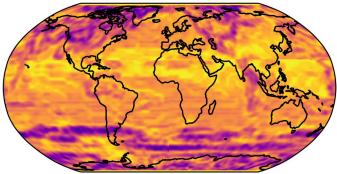
Mean test classification matrix after fitting a random forest to all the training data except a single climate variable, for two (zfp) parameter sets: mean accuracy: 74.5%

zfp_p_	.14	$174 \\ 62\%$	$23 \\ 8\%$	73 73%	0 0%	0 0%	0 0%	0 0%
zfp_p_	.16	$98 \\ 35\%$	$\frac{24}{8\%}$	27 27%	0 0%	0 0%	0 0%	0 0%
zfp_p_ sse	.18	1 0%	0 0%	0 0%	0 0%	0 0%	0 0%	0 0%
Output Class	20	0 0%	0 0%	0 0%	0 0%	0 0%	0 0%	0 0%
zfp_p_	22	0 0%	0 0%	0 0%	0 0%	0 0%	0 0%	0 0%
zfp_p_	_24	0 0%	$198 \\ 66\%$	0 0%	0 0%	0 0%	0 0%	0 0%
zfp_p_	.26	7 2%	$53 \\ 18\%$	0 0%	0 0%	0 0%	0 0%	0 0%

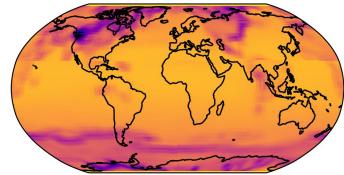
zfp_p_14 zfp_p_16 zfp_p_18 zfp_p_20 zfp_p_22 zfp_p_24 zfp_p_26 $\$

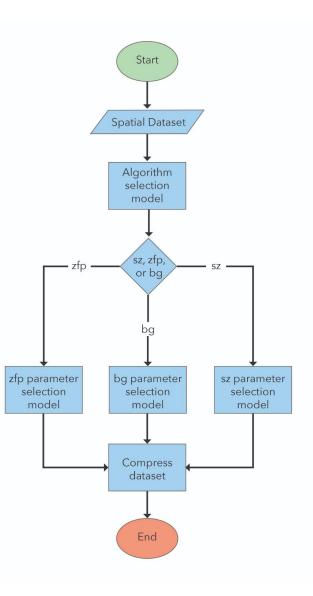
Target Class

Accuracy can drop significantly when training on more than two classes.



Output (Predicted) Class


Continuing Work


- We are looking at using local spatial features to determine optimal compression levels, increasing the amount and variety of input training data.
- Training time / number of models to train is a major drawback. Improving code parallelism is a big focus.
- Development of a multi-stage model that first predicts the optimal compression algorithm, and then selects the appropriate compression parameter for the algorithm.

Actual DSSIMs: dssims: mean = -1.67

Model Predictions: dssims: mean = -1.60

MINES.EDU

Thank You!

Further Reading:

- A. H. Baker, H. Xu, D. M. Hammerling, S. Li, and J. P. Clyne, "Toward a multi-method approach: Lossy data compression for climate simulation data," in International Conference on High Performance Computing. Springer, 2017, pp. 30–42.
- A. Pinard, A. H. Baker, and D. M. Hammerling, "A statistical approach to obtaining a data structural similarity index cutoff threshold," National Center for Atmospheric Research, Tech. Rep. NCAR/TN-568+STR, 2021.
- "Examining variations in the optimal compression level of spatiotemporal datasets determined using the data structural similarity index measure (dssim)," National Center for Atmospheric Research, Tech. Rep. NCAR/TN-570+STR, 2021.
- A. Pinard, D. M. Hammerling, and A. H. Baker, "Assessing differences in large spatio-temporal climate datasets with a new python package," in 2020 IEEE International Conference on Big Data (Big Data), 2020, pp. 2699–2707.

