WAVECHASM: Small-scale waves, big implications – a regionally refined perspective with WACCM-RR

WAWG June 2024

Marcin Kupilas¹, Chester Gardner², Maria Vittoria Guarino³, Wuhu Feng¹, Daniel Marsh¹, John Plane¹

1 – University of Leeds, UK
2 – University of Illinois, US
3 – International Centre for Theoretical Physics, Italy

Natural Environment Research Council

Contact: m.m.kupilas@leeds.ac.uk

Motivation

- It is likely that vertical transport in MLT is too slow in GCMs e.g. Whole Atmosphere Community Climate Model (WACCM) – missing transport due to unresolved gravity waves?
 - O, O₃ underestimated
 - T, Na and Fe are overestimated
- Gravity waves form due to atmospheric disturbances (storms, convection, flows over orography)
- Important small-scale gravity waves are not usually resolved, so parametrizations must be used (see e.g. Guarino et al. (2023))
- Global high-resolution models are too computationally expensive
- Using WACCM with regional refinement (WACCM-RR), it is now possible to resolve local regions whilst maintaining global coupling

Experimental setup

	WACCM (Non-RR)	WACCM-RR (RR)
Δx , Δy	1° (111 km)	$\frac{1}{8}$ ° (14 km) over contiguous US 1° elsewhere
Δz (MLT)	2.5 – 3 km	2.5 – 3 km
Δt	30 min	3 min 45 seconds
λ_h cut-off	pprox 222 km	pprox 30 km
λ_z cut-off	≈ 6 km	≈ 6 km
t_{wave} cut-off	1 hour	7 min 30 seconds
Credit: Nick Davis, Peter Lauritzen, Daniel Marsh (NCAR		

- Free running historical atmosphere FWmaHIST modelled for 2010
- Gravity wave drag scheme is turned off over extended CONUS * domain in both models

WAVECHASM

Temperature (K) 2010-06-01/02 over extended CONUS domain

UNIVERSITY OF LEEDS

Vertical velocity (ms⁻¹) 2010-06-01/02 over extended CONUS domain

Nitric Oxide log₁₀(vmr) 2010-06-01/02 over extended CONUS domain

with strong convection

Odd Oxygen vmr, ~ 75 – 130 km, June monthly mean, domain mean

Atomic oxygen increases throughout MLT

More than doubling of night-time O₃ at secondary maximum

UNIVERSITY OF LEEDS

WAVECHASM

m.m.kupilas@leeds.ac.uk

CO₂. CO vmr, ~ 75 – 130 km, June monthly mean, domain mean

• CO₂ increases above ~ 90 km

• CO decreases above ~ 95 km

NO vmr, T (K), ~ 75 – 130 km, June monthly mean, domain mean

 NO ~ doubled in mesosphere, surplus decreases with height

• T surplus in mesosphere, sharp increasing deficit above ~ 125 km

WAVECHASM

WAVECHASM

Summary

- Unresolved gravity waves are usually parametrized, recent work has improved WACCM performance (see Guarino et al. (2023))
- WACCM-RR can resolve smaller-scale waves down to as far as ~ 10 km horizontal wavelengths, ~ 6km vertical wavelengths and ~ 8-minute periods
- Two models, WACCM (Non-RR) and WACCM-RR (RR) were studied
- A significant amount of wave activity is resolved in RR and observed in various fields such as T, w, NO
- Clear link between small-scale variability between lower and upper atmosphere
- O_x increases
- CO₂ increases and CO decreases in lower thermosphere
- **Going forward:** quantify contribution to model differences due to gravity waves

Thank you

Contact: m.m.kupilas@leeds.ac.uk

Acknowledgements

- Nicholas Davis
- Peter Lauritzen
- Tao Li
- Xinzhao Chu
- Xianghui Xue
- Guotao Yang
- Satonori Nozawa
- Alan Liu

Natural Environment Research Council