

## **Modeling Atmospheric Chemistry and Aerosols**

Presented by Rebecca Buchholz, Atmospheric Chemistry Observations & Modeling (ACOM) Laboratory

#### **Chemistry-Climate Working Group (CCWG)**

CCWG Co-Chairs:

Software Engineers: CCWG Liaisons: Simone Tilmes Rafael Fernandez Francis Vitt Rebecca Buchholz Shawn Honomichl

August, 2024

## **Atmospheric Chemistry**

- Motivation
- Adding processes into models
  - $\circ$  Emissions
  - Chemical mechanism
  - Aerosol model and cloud interactions
  - Dry Deposition
  - Wet Deposition
- Applications
- Support





## **Atmospheric Chemistry: Why is it important – Health**

### Ozone pollution (NOx, CO, VOC, CH4):

- $\rightarrow$  Damages tissues, causes inflammation
- $\rightarrow$  Coughing, chest tightness and worsening of asthma

# Particulate Matter: PM2.5 and PM10 diameter < 2.5 or 10 $\mu m$ (SO2, VOC, NH3, BC, OC, fine dust):

 $\rightarrow$  Cardiovascular impacts (lungs and heart), premature deaths

### Sources:

- Traffic / Industry & Private (use of fossil fuels)
- Farmland
- Fires
- Vegetation
- PM: Dust storms (worsen with climate change)
- PM: Volcanoes



(7+ million premature deaths due to air pollution per year !!)



## **Atmospheric Chemistry: Why is it important – Climate**



- Chemistry and aerosols interact with the climate
- Importance of describing ozone and aerosol precursors
- Importance of aerosol-cloud interactions in models



## **Atmospheric Chemistry: Why is it important – Stratospheric Ozone**



Ozone abundance \_\_\_\_\_



The ozone layer in the stratosphere protects life from harmful UV, through photochemical reactions

Accurate modeling is required:

- Impact on tropospheric chemistry
- Ozone hole recovery (CFCs)
- Cause of a slowing trend



## **Atmospheric Chemistry**

### Motivation

- Adding processes into models
  - Emissions
  - Chemical mechanism
  - Aerosol model and cloud interactions
  - Dry Deposition
  - Wet Deposition
- Applications
- Support





$$\frac{\partial \chi(i)}{\partial t} = \text{Sources}(i) - \text{Sinks}(i)$$

Introduction to Atmospheric Chemistry, Daniel J. Jacob https://acmg.seas.harvard.edu/education/introduction-atmospheric-chemistry



$$\frac{\partial \chi(i)}{\partial t} = \text{Sources}(i) - \text{Sinks}(i)$$



Introduction to Atmospheric Chemistry, Daniel J. Jacob https://acmg.seas.harvard.edu/education/introduction-atmospheric-chemistry



$$\frac{\partial \chi(i)}{\partial t} = \text{Sources}(i) - \text{Sinks}(i) = E_i$$

**E**<sub>i</sub> Emissions



Introduction to Atmospheric Chemistry, Daniel J. Jacob https://acmg.seas.harvard.edu/education/introduction-atmospheric-chemistry



## **Emissions in CESM**

### **Emissions**

- Surface emissions: anthropogenic, biogenic, biomass burning (fire), ocean, soil
- Vertical emissions: (external forcings): aircraft, volcanoes, power plants, (fire optional)
- Interactive: Dust, biogenic, sea salt, lightning NO<sub>x</sub>, (fire optional/experimental)

### **Surface concentrations**

- Lower boundary conditions (greenhouse gases  $CO_2$ ,  $CH_4$ ,  $O_3$ ,  $N_2O$  and, long-lived gases CFCs). Can vary latitudinally.





## **Interactive emissions: Dust**



## **Interactive emissions: Biogenic**

# The **MEGAN-v2.1** algorithm Emissions for species i:

$$\mathbf{F}_{i} = \mathbf{\gamma}_{i} \sum \mathbf{\epsilon}_{i,j} \mathbf{\chi}_{j}$$

where

 $\mathbf{\gamma}_i$ : emission activity factor, depends on leaf area index (LAI), meteorology (T, solar radiation), leaf age, soil moisture, with separate light-dependent and light-independent factors

 $\boldsymbol{\epsilon}_{i,j}$  : emission factor at standard conditions for vegetation type (PFT) j

 $\mathbf{X}_{i}$ : fractional area of PFT j



Guenther et al., GMD, 2012





$$\frac{\partial \chi(i)}{\partial t} = \text{Sources}(i) - \text{Sinks}(i) = \text{E}_{i}(+\text{C}_{i} + \text{A}_{i})$$

- **E**<sub>i</sub> Emissions
- **C**<sub>i</sub> Gas-phase-Chemistry
- Aerosol-processes
   (Gas-aerosol exchange, het chem.)



Introduction to Atmospheric Chemistry, Daniel J. Jacob https://acmg.seas.harvard.edu/education/introduction-atmospheric-chemistry



## **Tropospheric Chemistry in CESM**



Photochemistry Gas-phase chemistry Heterogeneous chemistry Aqueous phase chemistry Gas-to-aerosol Exchange

Young et al., 2017



## **Stratospheric Chemistry in CESM**





#### Comprehensive Stratospheric Chemistry

- Heterogeneous reactions
- Catalytic Cycles



## Atmospheric chemistry mechanisms in CESM

| Chemistry mechanism descriptions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                                                   |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------|-----------|
| Compounds in CESM Mechanisms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Name  | Description                                                       | # species |
| 200 Lons - Halogens - Halogens - Ions - Halogens - Halogens - Halogens - Ions - Halogens - Halogens - Ions - Halogens - Halogens - Ions - Halogens - Halog | T1    | Comprehensive tropospheric chemistry; for air quality simulations | 179       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T2    | T1 with detailed terpene chemistry                                | 265       |
| $\begin{bmatrix} S \\ S \\ S \\ C \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Τ4    | Simpler tropospheric chemistry suitable for climate simulations   | 97        |
| Image: Second                                | TS1   | T1 with comprehensive stratospheric chemistry                     | 216       |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TSMLT | T1 with stratosphere, mesosphere, lower thermosphere chemistry    | 225       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T4S   | T4 with comprehensive stratospheric chemistry                     | 134       |
| 0 TSMLT TS1 T4S SO<br>Mechanism Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SO    | Specified Oxidants, with GHGs                                     | 33        |

#### Slide: Louisa Emmons



## CAM6 vs CAM-chem

Same atmosphere, physics, resolution

**Different chemistry and aerosols -> emissions and coupling** 

 CAM6: Aerosols are calculated, using simple chemistry ("fixed" oxidants) (prescribed: N<sub>2</sub>, O<sub>2</sub>, H<sub>2</sub>O, O<sub>3</sub>, OH, NO<sub>3</sub>, HO<sub>2</sub>; chemically active: H<sub>2</sub>O<sub>2</sub>, H<sub>2</sub>SO<sub>4</sub>, SO<sub>2</sub>, DMS, SOAG)

### **Limited interactions between Chemistry and Climate**

- -> prescribed fields are derived using chemistry-climate simulations
- Prescribed ozone is used for radiative calculations
- Prescribed oxidants is used for aerosol formation
- Prescribed methane oxidation rates
- Prescribed stratospheric aerosols
- Prescribed nitrogen deposition
- Simplified secondary organic aerosol description



## **Default Modal Aerosol Model (MAM4)**



Representation of

- Sulfates,
- Black Carbon
- Organic Carbon, Organic Matter (OC, SOA),
- Mineral Dust and Sea-Salt

Courtesy Mike Mills



## **Secondary Organic Aerosol Description**

#### **ORGANIC CARBON AEROSOL SOURCES**



#### Simplified Chemistry (CAM6):

- SOAG (oxygenated VOCs) derived from fixed mass yields
- · no interactions with land

#### **Comprehensive Chemistry:**

- SOAG formation derived from VOCs using Volatility Bin Set (VBS)
- 5 volatility bins
- Interactive with land emissions
- -> a more physical approach

Modified from C. Heald, MIT Cambridge



$$\frac{\partial \chi(i)}{\partial t} = \text{Sources}(i) - \text{Sinks}(i) = \text{E}_{i} + \text{C}_{i} + \text{A}_{i} + \text{T}_{i}$$



Introduction to Atmospheric Chemistry, Daniel J. Jacob https://acmg.seas.harvard.edu/education/introduction-atmospheric-chemistry



$$\frac{\partial \chi(i)}{\partial t} = \text{Sources}(i) - \text{Sinks}(i) = \text{E}_{i} + \text{C}_{i} + \text{A}_{i} + \text{T}_{i} - \text{W}_{i} - \text{D}_{i}$$

- **E**<sub>i</sub> Emissions
- **C**<sub>i</sub> Gas-phase-Chemistry
- Aerosol-processes
   (Gas-aerosol exchange, het chem.)
- $T_i$  Advection + Diffusion
- *W<sub>i</sub>* Cloud-processes (wet deposition)
- **D**<sub>i</sub> Dry deposition



Introduction to Atmospheric Chemistry, Daniel J. Jacob https://acmg.seas.harvard.edu/education/introduction-atmospheric-chemistry



## **Wet Deposition**

Large-scale and convective precipitation: uptake of chemical constituents in rain or ice

Considers in-cloud and below-cloud scavenging rates and solubility factors of aerosol and chemical species

A first-order loss process

$$X_{iscav} = X_i \times F \times (1 - \exp(-\lambda \Delta t))$$

X<sub>iscav</sub> scavenged species (kg)
 X<sub>i</sub> species

*F* fraction of the grid box from which tracer is being removed

 $\pmb{\lambda}$  is the loss rate



Deni Murray ACOM ASP graduate visitor





*References:* (Barth et al., 2000, Neu and Prather 2012, Lamarque et al., 2012)



## **Aerosol – Cloud Interactions**



#### E3SM: Wang et al., 2020 (JAMES)



## **Dry Deposition Velocity Calculation**

Resistance model:



 $F = -v_d C$ 

F = deposition flux C = concentration of species in 10m surface layer

Uptake of chemical constituents by plants and soil (CLM), depends on land type, roughness of surface





$$\frac{\partial \chi(i)}{\partial t} = \text{Sources}(i) - \text{Sinks}(i) = \text{E}_{i} + \text{C}_{i} + \text{A}_{i} + \text{T}_{i} - \text{W}_{i} - \text{D}_{i}$$

- **E**<sub>i</sub> Emissions
- **C**<sub>i</sub> Gas-phase-Chemistry
- Aerosol-processes
   (Gas-aerosol exchange, het chem.)
- $T_i$  Advection + Diffusion
- *W<sub>i</sub>* Cloud-processes (wet deposition)
- **D**<sub>i</sub> Dry deposition



Introduction to Atmospheric Chemistry, Daniel J. Jacob https://acmg.seas.harvard.edu/education/introduction-atmospheric-chemistry



## **Atmospheric Chemistry**

- Motivation
- Adding processes into models
  - Emissions
  - Chemical mechanism
  - Aerosol model and cloud interactions
  - Dry Deposition
  - Wet Deposition
- Applications: CAM-chem
- Support





## $\label{eq:chemistry} \textbf{ } \rightarrow \textbf{ Air Quality: Regional refinement}$

MUSICA-V0: Multi-Scale Infrastructure for Chemistry and Aerosols CAM-chem-SE-RR - Community Atmosphere Model with Chemistry With Spectral Element (SE) dynamical core and Regional Refinement (RR)

MUSICA-wiki: tutorials and support <a href="https://wiki.ucar.edu/display/MUSICA">https://wiki.ucar.edu/display/MUSICA</a>



### Example: U.S. Air Quality, Surface Ozone (ppb)

• Exposure Relevant scales and large-scale feedbacks



**Regional Refined** 



20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77 80 83



## $\textbf{Chemistry} \rightarrow \textbf{Climate: Australian wildfires 2019/2020}$

- CESM/CAM6 simulation with aerosols, satellite-based inventory (GFED) in Australia compared to climatology
- Climate response similar to a major volcanic eruption (aerosol-cloud interactions)
- Large interhemispheric radiative imbalance anomaly and impacts on ENSO





## **Atmospheric Chemistry**

- Motivation
- Adding processes into models
  - Emissions
  - Chemical mechanism
  - Aerosol model and cloud interactions
  - Dry Deposition
  - Wet Deposition
- Applications
- Support





## **User Support for CAM-Chem and WACCM**

Wiki Page for Chemistry:

https://wiki.ucar.edu/display/camchem/Home

| Use and Diagnostics          | <ul> <li>Boundary conditions for regional modeling</li> <li>Atmospheric Diagnostics (ADF) in python <i>NEW!</i></li> <li>Automated CESM diagnostic package (using NCL)</li> <li>Using CAM-chem output</li> <li>MELODIES MONET model-obs comparison package</li> </ul>             |  |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| User Community               | <ul> <li>Current Users/Projects</li> <li>Contributions to Model Intercomparisons (MIPs)</li> <li>CAM-chem Forum</li> <li>Chemistry-Climate Working Group Publications</li> <li>CAM-chem Publications from NCAR</li> <li>CESM Publications</li> </ul>                              |  |
| Other links and<br>documents | <ul> <li>Recent Bug Fixes</li> <li>CAM Documentation (User and Scientific Guides)</li> <li>ACOM CAM-chem page</li> <li>CESM Chemistry Climate Working Group</li> <li>Join the CESM Chemistry WG mailing list</li> <li>Benchmarks and Production Experiment Diagnostics</li> </ul> |  |

Regional Refinement Wlki: https://wiki.ucar.edu/display/MUSICA

**Forum** to search for and ask questions: <u>http://bb.cgd.ucar.edu</u>/

**Contact us:** Simone Tilmes CAM-Chem co-chair <u>tilmes@ucar.edu</u>

Rebecca Buchholz CAM-Chem Liaison buchholz@ucar.edu

Shawn Honomichl CAM-Chem Liaison <u>shawnh@ucar.edu</u>

