

Modeling Atmospheric Chemistry and Aerosols

Presented by Rebecca Buchholz, Atmospheric Chemistry Observations & Modeling (ACOM) Laboratory

Chemistry-Climate Working Group (CCWG)

CCWG Co-Chairs: Simone Tilmes

Software Engineers: Francis Vitt

Rafael Fernandez CCWG Liaisons: Rebecca Buchholz Shawn Honomichl

August, 2024

Atmospheric Chemistry

- **•** Motivation
- Adding processes into models
	- Emissions
	- Chemical mechanism
	- Aerosol model and cloud interactions
	- Dry Deposition
	- Wet Deposition
- Applications
- Support

Atmospheric Chemistry: Why is it important – Health

Ozone pollution (NOx, CO, VOC, CH4):

- \rightarrow Damages tissues, causes inflammation
- \rightarrow Coughing, chest tightness and worsening of asthma

Particulate Matter: PM2.5 and PM10 diameter < 2.5 or 10 μm (SO2, VOC, NH3, BC, OC, fine dust):

 \rightarrow Cardiovascular impacts (lungs and heart), premature deaths

Sources:

- Traffic / Industry & Private (use of fossil fuels)
- Farmland
- Fires
- Vegetation
- PM: Dust storms (worsen with climate change)
-

- PM: Volcanoes *(7+ million premature deaths due to air pollution per year !!)*

Atmospheric Chemistry: Why is it important – Climate

- Chemistry and aerosols interact with the climate
- Importance of describing ozone and aerosol precursors
- Importance of aerosol-cloud interactions in models

Atmospheric Chemistry: Why is it important – Stratospheric Ozone

Ozone abundance

The ozone layer in the stratosphere protects life from harmful UV, through photochemical reactions

Accurate modeling is required:

- Impact on tropospheric chemistry
- Ozone hole recovery (CFCs)
- Cause of a slowing trend

Atmospheric Chemistry

• Motivation

- Adding processes into models
	- Emissions
	- Chemical mechanism
	- Aerosol model and cloud interactions
	- Dry Deposition
	- Wet Deposition
- Applications
- Support

$$
\frac{\partial \chi(i)}{\partial t} = \text{Sources}(i) - \text{Sinks}(i)
$$

Introduction to Atmospheric Chemistry, Daniel J. Jacob <https://acmg.seas.harvard.edu/education/introduction-atmospheric-chemistry>

$$
\frac{\partial \chi(i)}{\partial t} = \text{Sources}(i) - \text{Sinks}(i)
$$

Introduction to Atmospheric Chemistry, Daniel J. Jacob <https://acmg.seas.harvard.edu/education/introduction-atmospheric-chemistry>

$$
\frac{\partial \chi(i)}{\partial t} = \text{Sources}(i) - \text{Sinks}(i) \leftarrow E_i
$$

Introduction to Atmospheric Chemistry, Daniel J. Jacob <https://acmg.seas.harvard.edu/education/introduction-atmospheric-chemistry>

Emissions in CESM

Emissions

- Surface emissions: anthropogenic, biogenic, biomass burning (fire), ocean, soil
- Vertical emissions: (external forcings): aircraft, volcanoes, power plants, (fire optional)
- Interactive: Dust, biogenic, sea salt, lightning NO_x, (fire optional/experimental)

Surface concentrations

- Lower boundary conditions (greenhouse gases CO_2 , CH_4 , O_3 , N₂O and, long-lived gases CFCs). Can vary latitudinally.

Interactive emissions: Dust

Interactive emissions: Biogenic

The **MEGAN-v2.1** algorithm Emissions for species i:

 $\mathbf{F}_{i} = \mathbf{v}_{i} \sum \varepsilon_{i,j} \mathbf{x}_{j}$

where

γ_i: emission activity factor, depends on leaf area index (LAI), meteorology (T, solar radiation), leaf age, soil moisture, with separate light-dependent and light-independent factors

ε_{i,} : emission factor at standard conditions for vegetation type (PFT) j

χ : fractional area of PFT j

Guenther et al., GMD, 2012

$$
\frac{\partial \chi(i)}{\partial t} = \text{Sources}(i) - \text{Sinks}(i) = E_i \left(+ C_i + A_i \right)
$$

- *Ei* Emissions
- *Ci* Gas-phase-Chemistry
- Aerosol-processes (Gas-aerosol exchange, het chem.)

Introduction to Atmospheric Chemistry, Daniel J. Jacob <https://acmg.seas.harvard.edu/education/introduction-atmospheric-chemistry>

Tropospheric Chemistry in CESM

Photochemistry Gas-phase chemistry Heterogeneous chemistry Aqueous phase chemistry Gas-to-aerosol Exchange

Young et al., 2017

Stratospheric Chemistry in CESM

Comprehensive Stratospheric Chemistry

- Heterogeneous reactions
- **Catalytic Cycles**

Atmospheric chemistry mechanisms in CESM

Slide: Louisa Emmons

CAM6 vs CAM-chem

Same atmosphere, physics, resolution

Different chemistry and aerosols -> emissions and coupling

• CAM6: Aerosols are calculated, using simple chemistry ("fixed" oxidants) (prescribed: N₂, O₂, H₂O, O₃, OH, NO₃, HO₂; chemically active: H₂O₂, H₂SO₄, SO₂, DMS, SOAG)

Limited interactions between Chemistry and Climate

- **-> prescribed fields are derived using chemistry-climate simulations**
- Prescribed ozone is used for radiative calculations
- Prescribed oxidants is used for aerosol formation
- Prescribed methane oxidation rates
- Prescribed stratospheric aerosols
- Prescribed nitrogen deposition
- Simplified secondary organic aerosol description

Default Modal Aerosol Model (MAM4)

Representation of

- Sulfates,
- **Black Carbon**
- Organic Carbon, Organic Matter (OC, SOA),
- Mineral Dust and Sea-Salt

Courtesy Mike Mills

Secondary Organic Aerosol Description

ORGANIC CARBON AEROSOL SOURCES

Simplified Chemistry (CAM6):

- SOAG (oxygenated VOCs) derived from fixed mass yields
- no interactions with land

Comprehensive Chemistry:

- SOAG formation derived from VOCs using Volatility Bin Set (VBS)
- 5 volatility bins
- Interactive with land emissions
- -> a more physical approach

Modified from C. Heald, MIT Cambridge

$$
\frac{\partial \chi(i)}{\partial t} = \text{Sources}(i) - \text{Sinks}(i) = E_i + C_i + A_i \left(\overline{I_i} \right)
$$

Introduction to Atmospheric Chemistry, Daniel J. Jacob <https://acmg.seas.harvard.edu/education/introduction-atmospheric-chemistry>

$$
\frac{\partial \chi(i)}{\partial t} = \text{Sources}(i) - \text{Sinks}(i) = E_i + C_i + A_i + T_i \left(-W_i - D_i \right)
$$

- *Ei* Emissions
- *Ci* Gas-phase-Chemistry
- Aerosol-processes (Gas-aerosol exchange, het chem.)
- Advection + Diffusion
- W_i Cloud-processes (wet deposition)
- *D_i* Dry deposition

Introduction to Atmospheric Chemistry, Daniel J. Jacob <https://acmg.seas.harvard.edu/education/introduction-atmospheric-chemistry>

Wet Deposition

Large-scale and convective precipitation: uptake of chemical constituents in rain or ice

Considers in-cloud and below-cloud scavenging rates and solubility factors of aerosol and chemical species

A first-order loss process

$$
X_{\text{iscav}} = X_i \times F \times (1 - \exp(-\lambda \Delta t))
$$

*X***iscav** scavenged species (kg) *Xi* species

F fraction of the grid box from which tracer is being removed

λ is the loss rate

Deni **Murray** ACOM ASP graduate visitor

References: (Barth et al., 2000, Neu and Prather 2012, Lamarque et al., 2012)

Aerosol – Cloud Interactions

E3SM: Wang et al., 2020 (JAMES)

Dry Deposition Velocity Calculation

Resistance model:

 $F = -v_d C$

F = deposition flux *C* = concentration of species in 10m surface layer

Uptake of chemical constituents by plants and soil (CLM), depends on land type, roughness of surface

$$
\frac{\partial \chi(i)}{\partial t} = \text{Sources}(i) - \text{Sinks}(i) = E_i + C_i + A_i + T_i - W_i - D_i
$$

it can get expensive very fast! \$

- *Ei* Emissions
- *Ci* Gas-phase-Chemistry
- Aerosol-processes (Gas-aerosol exchange, het chem.)
- Advection + Diffusion
- *Wi* Cloud-processes (wet deposition)
- *D_i* Dry deposition

Introduction to Atmospheric Chemistry, Daniel J. Jacob <https://acmg.seas.harvard.edu/education/introduction-atmospheric-chemistry>

Atmospheric Chemistry

- Motivation
- Adding processes into models
	- Emissions
	- Chemical mechanism
	- Aerosol model and cloud interactions
	- Dry Deposition
	- Wet Deposition
- Applications: CAM-chem
- Support

Chemistry → Air Quality: Regional refinement

MUSICA-V0: **Multi-Scale Infrastructure for Chemistry and Aerosols** CAM-chem-SE-RR - Community Atmosphere Model with Chemistry With Spectral Element (SE) dynamical core and Regional Refinement (RR)

MUSICA-wiki: tutorials and support <https://wiki.ucar.edu/display/MUSICA>

Example: U.S. Air Quality, Surface Ozone (ppb)

• Exposure Relevant scales and large-scale feedbacks

Regional Refined

Chemistry → Climate: Australian wildfires 2019/2020

- CESM/CAM6 simulation with aerosols, satellite-based inventory (GFED) in Australia compared to climatology
- Climate response similar to a major volcanic eruption (aerosol-cloud interactions)
- Large interhemispheric radiative imbalance anomaly and impacts on ENSO

Atmospheric Chemistry

- Motivation
- Adding processes into models
	- Emissions
	- Chemical mechanism
	- Aerosol model and cloud interactions
	- Dry Deposition
	- Wet Deposition
-
- Support

User Support for CAM-Chem and WACCM

Wiki Page for Chemistry:

wiki age for chemistry.
<https://wiki.ucar.edu/display/camchem/Home> **Forum** to search for and

Regional Refinement WIki: <https://wiki.ucar.edu/display/MUSICA>

ask questions: http://bb.cgd.ucar.edu/

Contact us: Simone Tilmes CAM-Chem co-chair tilmes@ucar.edu

Rebecca Buchholz CAM-Chem Liaison buchholz@ucar.edu

Shawn Honomichl CAM-Chem Liaison shawnh@ucar.edu

