

Atmospheric Modeling II: **Parameterizations**

Meg Fowler, Christina McCluskey, and Ben Stephens

NSF NCAR CGD. Atmospheric Modeling and Predictability (AMP)

CESM Tutorial: August 5, 2024

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsor ed by the National Science Foundation under Cooperative Agreement No. 1852977.

Learning Outcomes

By the end of this talk, you should have:

- An understanding of what a model "parameterization" is and why it's necessary
- Familiarity with some of the main parameterizations in the Community Atmospheric Model v6 (CAM6)
- The ability to find more information about any parameterization on your own

The representation, in a dynamic model, of physical effects in terms of admittedly oversimplified parameters, rather than realistically requiring such effects to be consequences of the dynamics of the system.

-American Meteorological Society (AMS) Glossary

The representation, in a dynamic model, of physical effects in terms of admittedly oversimplified parameters, rather than realistically requiring such ef dynamics of the system.

-American Meteorological Sd

A method of replacing processes that are **too small-scale or complex** to be physically represented in the model by a **simplified process.**

-Wikipedia

• Imagine you're in Paris for the Olympics, but your phone broke and you can't zoom in on maps anymore! The map on the left has a *ton* of info, but the map on the right, with coarser resolution has enough info to get around!

<https://maps-paris.com/maps-paris-city/map-of-central-paris> <https://maps-paris.com/maps-paris-tourist/paris-places-to-visit-map>

- Imagine you're in Paris for the Olympics, but your phone broke and you can't zoom in on maps anymore! The map on the left has a *ton* of info, but the map on the right, with coarser resolution has enough info to get around!
- This is *somewhat* the idea of model parameterizations; they take complex, detailed information and turn them into simplified representations at larger scales.
- The goal is to capture the impact of those smaller (sub-grid) phenomena on the larger (resolved) scale.

<https://maps-paris.com/maps-paris-tourist/paris-places-to-visit-map>

What kinds of things would an atmospheric model need to parameterize?

<http://ww2010.atmos.uiuc.edu/%28Gh%29/guides/mtr/svr/modl/line/squall.rxml>

Factors that go into choosing parameterizations

- Impact on the Earth system
	- E.g., shape of a leaf vs. land use
- Computational expense
	- Should be cheaper than explicitly representing the process in question
- Process uncertainty
	- What can be represented with limitations in process -level knowledge?

Learning Outcomes

By the end of this talk, you will have:

• An understanding of what a model "parameterization" is and why it's necessary

 $\mathcal{F}_{\mathcal{F}}$ familiarity with some of the main parameterizations in the main parameterizations in the C A parameterization is a way to represent unresolved (and potentially uncertain) sub-grid processes for
their impect en the resolved escle their impact on the resolved scale.

Often stems from physics (conservation principles, etc.) and/or from observationally-derived constraints

Learning Outcomes

By the end of this talk, you will have:

- An understanding of what a model "parameterization" is and why it's necessary
- Familiarity with some of the main parameterizations in the Community Atmospheric Model v6 (CAM6)
- The ability to find more information about *any* parameterization on your own

Parameterizations in CAM6

Radiation in CAM6

- The radiative code must supply:
	- the total radiative flux at the surface to calculate the surface energy balance
	- the radiative heating and cooling rates at each level of the atmosphere
- The parameterization should include the combined effect of absorption and scattering by the radiatively active gases (H2O, CO2, O3…) together with cloud and aerosol.
- CAM6 uses the Rapid Radiative Transfer Model for GCMs (RRTMG), a correlated k-distribution band model.

https://ei.lehigh.edu/learners/cc/planetary/planetary1.html

Convection in CAM6

Shallow Convection

- Scale: tens to hundreds of meters
- Instability mainly within PBL, limiting vertical growth of plumes
- Represented in CAM6 by Cloud Layers Unified By Binormals (CLUBB)

Deep Convection

- Scale: hundreds of meters to kilometers
- Instability through troposphere, allowing plumes to reach much higher
- Represented in CAM6 by Zhang McFarlane (ZM) scheme

CLUBB

- Represents boundary layer turbulence and shallow convection
- Predicts joint PDF of vertical velocity, temperature, and moisture
	- PDF used to predict grid means, (co)variances, and other higher-order moments of all three terms

CLUBB

- Represents boundary layer turbulence and shallow convection
- Predicts joint PDF of vertical velocity, temperature, and moisture
	- PDF used to predict grid means, (co)variances, and other higher-order moments of all three terms

 $8000 \frac{P(r)}{r}$ P_{(w} 6000 comp. 1 4000 comp. 2 2000 -1.0 -0.5 0.0 0.5 1.0 1.5 0.0165 0.0170 0.0175 0.0180 $P(rt, thI)$ P (thl) (w, th) 298.85 298.85 298.80 298.80 298.75 298.75 298.70 298.70 298.65 298.65 298.60 $-1.0 -0.5 0.0$ $0.5 - 1.0$ 0.0170 0.0175 0.0165 0.0180 20 30° 10 $0.01800 - P(w.r$ $P(rt)$ 0.01800 0.01775 0.01775 0.01750 0.01750 0.01725 0.01725 0.01700 0.01700 0.01675 0.01675 0.01650 0.01650 -1.0 -0.5 0.0 0.5 1.0 $^{\circ}$ 2000 4000 6000 8000

CESM Tutorial 2024

CLUBB PDF marginals, t=180:181.z=98107.98.lat=15.00.lon=-56.50

Deep Convection (ZM)

- Originally based on [Zhang & McFarlane 1995](https://www.tandfonline.com/doi/abs/10.1080/07055900.1995.9649539)
	- Modifications made over time, see more detail in the [CAM6 documentation](https://ncar.github.io/CAM/doc/build/html/cam6_scientific_guide/physics.html#deep-convection)
- Triggers based on hourly Convective Available Potential Energy (CAPE)
- Convective intensity proportional to amount of CAPE
- Mass flux approach to calculate air motion within plumes
- Parameterized entrainment and detrainment
- Calculates convective heating and moistening at each level

Convection in the future: unification? CLUBB+MF

- New parameterization avoids hand off between shallow/deep convection schemes by combining
- CLUBB continues to serve as boundary layer and shallow convection parameterization.
- Mass Flux (MF) scheme introduces explicit updraft plumes for deep convection

Adapted from Fig. 3 of Witte et al. (2022): LES (gray contours), CLUBB (black contours), and MF plumes (dots).

Cloud Microphysics in CAM6

Parameterization of Unified Microphysics Across Scales (PUMAS)

Gamma hydrometeor size distributions

Gettelman et al., 2020

Note: all cloud hydrometeors are assumed to be spherical

Cloud Microphysics in CAM6

Parameterization of Unified Microphysics Across Scales (PUMAS)

Cloud Microphysics in CAM6

Parameterization of Unified Microphysics Across Scales (PUMAS)

CAM6 Aerosol

Modal Aerosol Model (MAM4)

- Aerosol are emitted, advected, scavenged
- Modal scheme (lognormal):
	- Number and modal diameter (D_q) prognostic
	- Constant modal width (sigma)

 \star Dynamic emissions scheme

Liu et al., 2016

CAM6 Aerosol

Modal Aerosol Model (MAM4)

- Aerosol are emitted, advected, scavenged
- Modal scheme (lognormal):
	- Number and modal diameter (D_q) prognostic
	- Constant modal width (sigma)

 \star Dynamic emissions scheme

Liu et al., 2016

Fasullo et al., 2021

Learning Outcomes

By the end of this talk, you will have:

- An understanding of what a model "parameterization" is and why it's necessary
- Familiarity with some of the main parameterizations in the Community Atmospheric Model v6 (CAM6)
- The ability to find more information about *any* parameterization on your own

Finding more detailed information on parameterizations in CAM

- GitHub [CAM6](https://ncar.github.io/CAM/doc/build/html/CAM6.0_users_guide/index.html) documentation
- Technical documents (e.g., [CLUBB-SILHS](https://arxiv.org/pdf/1711.03675) arXiv document)
- Main parameterization papers
	- RRTMGP: [Pincus et al., 2023](https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019MS001621)
	- CLUBB: [Golaz et al., 2002](https://journals.ametsoc.org/view/journals/atsc/59/24/1520-0469_2002_059_3540_apbmfb_2.0.co_2.xml?tab_body=fulltext-display)
	- ZM: [Zhang & McFarlane 1995](https://www.tandfonline.com/doi/abs/10.1080/07055900.1995.9649539)
	- PUMAS: [Gettelman et al., 2023](https://gmd.copernicus.org/articles/16/1735/2023/) (doi:10.5194/gmd-16-1735-2023)
	- MAM4: [Liu et al., 2012](https://gmd.copernicus.org/articles/5/709/2012/gmd-5-709-2012.html) doi:10.5194/gmd -5-709-2012)
- Terminal (command line) scavenger hunt (grep -rni 'CLDLIQ')

Questions?

CESM Tutorial: August 5, 2024

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsor ed by the National Science Foundation under Cooperative Agreement No. 1852977.

100 km