

2024 CESM Tutorial

Challenge exercices: Lab intro

Multiple speakers CGD Aug 5-9, 2024

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

Challenge Exercises

Ξ

https://ncar.github.io/CESM-Tutorial/README.html

Challenge Exercises	^
Atmosphere	~
Paleo	~
Atmospheric chemistry	~
Land	~
Ocean	~
Sea Ice	~
Land Ice	~
Biogeochemistry	~

Q Search	* + K
Welcome to the CESM	1 Tutorial
Introduction	~
Prerequisites for Succ	cess 🗸
Basics	~
Simple XML Modificat	tions 🗸
Namelist Modification	s v
Troubleshooting runti errors	me 🗸
Source Modifications	~
Challenge Exercises	^
Atmosphere	~
Paleo	~
Atmospheric chemi	istry 🗸 🗸
Land	~
Ocean	~
Sea Ice	~
Land Ice	~
Biogeochemistry	~

0 7 13 4

Challenge Exercises

This section of the CESM tutorial is designed to test your understanding of the CESM model that you have learned about in previous sections.

We provide challenge exercises for the individual model components for you to test yourself.

Feel free to try all the challenge exercises or just the one(s) that are relevant for the CESM components of interest to you.

Previous Modify the rain_threshold in CLM

Next Atmosphere

Breakout leads/areas for challenge exercises

Cecile Hannay Atmosphere

Sophia Macarewich Paleo

Gunter Leguy Land Ice

David Bailey Sea Ice

Rebecca Buchholz Atmospheric Chemistry

Erik Kluzek Land (SE)

Kristen Krumhardt Biogeochemistry

Alper Altuntas Ocean

You are welcome to do exercises from different components

Atmosphere

- Change run starting date
- Increase orographic height over the western US
- Modify sea surface temperature in the tropics
- Increase the triggering threshold for deep convection over land

Paleo

Proposed exercises

- Modify orbital parameters to mid-Holocene (~6 ka)
- Run a CESM simulation with water isotope tracers

Atmospheric Chemistry: CAM-chem or WACCM

Using F cases

Proposed exercises with CAM-chem (FCHIST) or WACCM (FWHIST)

- 1. Control: Run chemistry with daily output
- 2. **Test**: Change reaction rate in the chemical mechanism
- 3. Test: Change emissions

Bonus

4. Visualization: Quick analysis using GEOV tool

e.g. of super-simple chemistry mechanism SPECIES Solution 03, 0, 01D -> 0, 02, 02 1S -> 02, 02 1D -> 02 End Solution Fixed M, N2 End Fixed End SPECIES Solution Classes Explicit CH4, N2O, CO, H2, CH3CL, CH3BR, CFC11, CFC12 End explicit Implicit 03, 0, 01D, 02, 02 1S, 02 1D End implicit End Solution Classes CHEMISTRY Photolysis [jo2 a] 02 + hv -> 0 + 01DEnd Photolysis Reactions

; 8e-12, -2060

[cph1, cph] 0 + 03 -> 2*02

End Reactions

END CHEMISTRY

https://ncar.github.io/CESM-Tutorial/notebooks/challenge/cam-chem_waccm/cam-chem_waccm.html#

Overview of land exercises

Ocean

CESM-POP2 exercise:

- Run a G compset with "normal year forcing" 1. as a control case.
- Turn off overflow parameterization to assess 2. its impact.
- Modify wind stress. 3.
- Turn on the ecosystem. 4.

CESM-MOM6 exercise:

MOM6.

5.

Download a CESM version including

Run a G compset with "normal year forcing" 6. as a control case.

Sea ice

Proposed exercises

- Run a G compset with "normal year forcing".
- Adjust the sea ice "albedo".
- Modify the snow conductivity.

Land ice

Proposed exercises

- Run a T compset and simulate the Greenland ice sheet evolution in CESM.
- Compute offline global sea level contribution from ice sheet.

Difference between a B and a T case

Proposed exercises

- Set up two different BGC cases and compare case directories (you will **not** be running the model for this exercise)
- Compsets: B1850 and B1850_BPRP
- Both have f19_g17 resolution

Closed carbon cycle. CO₂ concentrations, aerosols and calculated as a function of human emissions and land use

Figure from Sanderson et al., 2023 Differences concern how CO_2 is handled:

Prognostic CO₂

- Compset = B1850_BPRP
- "Emission-driven"
- Predicted atmospheric CO₂ concentrations, computed from surface fluxes

Diagnostic CO₂

- Compset = B1850
- "Concentration-driven"
- Prescribed atmospheric CO₂ concentrations that are read from a file