

## 2024 CESM Tutorial

Porting and Validating CESM 2.1.x

*Jim Edwards,* NCAR CGD Software Engineer

Aug 5-9, 2024

#### Define the new machine locally in your \$HOME/.cime directory

or

Define the machine in the your code sandbox to share with colleagues and potentially the CESM repositories.

Suggestion: Find a similar machine in the cesm/cime/config/cesm/machines/config\_machines.xml file and copy it to create your new machine definition then edit to adapt to your system.



2024 CESM Tutorial

#### **Defining a new machine in \$HOME/.cime**

- Create a directory \$HOME/.cime.
- Add files config\_machines.xml, config\_batch.xml, config\_compilers.xml
- The file config\_machines.xml should contain an entry similar to those found in cime/config/cesm/machines/config\_machines.xml
  - a minimal example is located in cime/config/cesm/machines/userdefined\_laptop\_template/config\_machines.xml
- Repeat this process with config\_compilers.xml and config\_batch.xml

Suggestion: The contents of config\_compilers.xml and config\_batch.xml are cumulative - most of what you need to define for a particular compiler (such as intel) or a particular batch system (pbs or slurm) are defined near the top of the file in cime/config/cesm/machines use these settings and only overwrite or add settings particular to your system.



**2024 CESM Tutorial** 

### Defining a new machine in your sandbox

Same as above but add your settings directly to cime/config/cesm/machines in your sandbox. When your port is complete and you are ready to share:

- 1. Create a git branch in your sandbox:
  - a. git checkout -b maint\_5.6\_port/my\_machine\_name
- 2. Create a fork of cime in github. (google it)
- 3. Open a pull request to the maint-5.6 branch of cime in the repository at <a href="https://github.com/ESMCI/CIME">https://github.com/ESMCI/CIME</a>



The 3 files of interest are config\_machines.xml, config\_batch.xml and config\_compilers.xml

- config\_machines.xml contains:
  - The path to cesm inputdata (this should be shared with other users if possible)
  - The location of case directories as well as run and build directories.
  - The names of compilers, batch systems and mpi libraries to be used
  - Module load and environment definitions
- config\_batch.xml contains:
  - o definitions of queues used on your system
  - $\circ$  submit arguments and batch submit flags
- config\_compilers.xml contains:
  - Link commands for support libraries
  - o compiler flags that may be unique to your system





</machine>

2024 CESM Tutorial

<resource limits> <resource name="RLIMIT\_STACK">-1</resource> </resource\_limits>

<environment\_variables> <env name="PERL5LIB">/work/n02/shared/perl/5.26.2</env> <env name="OMP\_NUM\_THREADS">{{ thread\_count }} </env> <env name="OMP\_PLACES">cores </env> <env name="OMP\_STACKSIZE">2G</env> <!--<env name="PATH">/work/n02/n02/csymonds/sw/conda/cesmenv2/bin:\$ENV{PATH}</env>--> </environment\_variables>

<cmd\_path lang="csh">module</cmd\_path> <modules compiler="gnu"> <command name="load"> PrgEnv-gnu</command> <command name="load"> cray-hdf5-parallel</command> <command name="load"> crav-netcdf-hdf5parallel</command> <command name="load"> cray-parallel-netcdf</command> <command name="load"> cray-libsci</command> </modules> <modules mpilib="mpi-serial"> <command name="rm"> cray-netcdf-hdf5parallel</command> <command name="rm"> crav-hdf5-parallel</command> <command name="rm"> cray-parallel-netcdf</command> <command name="load"> cray-hdf5</command> <command name="load">cray-netcdf</command> </modules> </module\_system>

<cmd\_path lang="sh">module</cmd\_path>

<machine MACH="archer2">

<OS>CNL</OS>

<COMPILERS>gnu,cray</COMPILERS>

<MPILIBS>mpich,mpi-serial</MPILIBS> <CIME\_OUTPUT\_ROOT>\$ENV{CESM\_ROOT}/runs</CIME\_OUTPUT\_ROOT> <DIN\_LOC\_ROOT>\$ENV{CESM\_ROOT}/cesm\_inputdata</DIN\_LOC\_ROOT> <DIN\_LOC\_ROOT\_CLMFORC>\${DIN\_LOC\_ROOT}/atm/datm7</DIN\_LOC\_ROOT\_CLMFORC> <DOUT\_S\_ROOT>\$ENV{CESM\_ROOT}/archive/\$CASE</DOUT\_S\_ROOT> <BASELINE\_ROOT>\$ENV{CESM\_ROOT}/ccsm\_baselines</BASELINE\_ROOT> <CCSM\_CPRNC>\$ENV{CIMEROOT}/tools/cprnc/cprnc</CCSM\_CPRNC> <GMAKE\_J>8</GMAKE\_J> <BATCH\_SYSTEM>slurm</BATCH\_SYSTEM> <SUPPORTED\_BY>leeds.ac.uk</SUPPORTED\_BY> <MAX TASKS PER NODE>128</MAX TASKS PER NODE> <MAX\_MPITASKS\_PER\_NODE>128</MAX\_MPITASKS\_PER\_NODE> <PROJECT\_REQUIRED>TRUE</PROJECT\_REQUIRED> <mpirun mpilib="default"> <executable>srun</executable> <arguments> <arg name="cpubind"> --distribution=block:block --hint=nomultithread</arg> <!--<arg name="cpubind"> -ZZ-cpu-bind=cores</arg> --> </arguments> </mpirun> <module\_system type="module" allow\_error="true"> <init\_path lang="perl">/usr/share/Imod/Imod/init/perl</init\_path> <init\_path lang="python">/usr/share/Imod/Imod/init/env\_modules\_python.py</init\_path> <init\_path lang="csh">/usr/share/Imod/Imod/init/csh</init\_path> <init\_path lang="sh">/usr/share/Imod/Imod/init/sh</init\_path> <cmd\_path lang="perl">/usr/share/Imod/Imod/libexec/Imod perl</cmd\_path> <cmd\_path lang="python">/usr/share/Imod/Imod/libexec/Imod python</cmd\_path>

<DESC>two CrayAMD EPYC Zen2, 128 pes/node, batch system is SLURM</DESC> <NODENAME\_REGEX>(In\d{2}\$|nid\d{6}\$)</NODENAME\_REGEX>

> <compiler MACH="athena" COMPILER="intel"> <CFLAGS> <append> -xHost </append> </CFLAGS> <CPPDEFS> <append> -DINTEL MKL -DHAVE SSE2 </append> </CPPDEFS> <FFLAGS> <append> -xHost </append> </FFLAGS> <FFLAGS> <append MODEL="nemo"> \$(FC\_AUTO\_R8) -O3 -assume norealloc\_lhs </append> </FFLAGS> <SLIBS> <append> \$SHELL{\${NETCDF PATH}/bin/nc-config --flibs}</append> </SLIBS> <MPICXX MPILIB="mpich2">mpiicpc</MPICXX> <MPICC MPILIB="mpich2">mpiicc</MPICC> <MPIFC MPILIB="mpich2">mpiifort</MPIFC> <SCC>icc</SCC> <SFC>ifort</SFC> <TRILINOS\_PATH MPILIB="mpich2">\$ENV{TRILINOS\_PATH}</TRILINOS\_PATH> </compiler>

</batch\_system>

</queues>

- <queue walltimemax="24:00:00">normal</queue> <queue walltimemax="00:30:00" nodemin="1" nodemax="16" default="true">debug</queue>
- </directives> <aueues>
- <directive default="/bin/bash" > -S {{ shell }} </directive>
- <directive>-I nodes={{ num\_nodes }}:ppn={{ tasks\_per\_node }}:xe</directive>
- <directives>
- <jobid\_pattern>(\d+.bw)\$</jobid\_pattern>

<batch system MACH="bluewaters" type="pbs" >

## **Testing your port**

You've made an initial attempt at a system port - how do you test it?

#### 1. Start with a simple case:

- a. cd cime/scripts
- b. ./create\_newcase -case foo -compset X -res f19\_g17 -machine my\_machine\_name
- c. cd foo
- d. ./case.setup
- e. ./case.build
- f. ./case.submit

Almost certainly these commands won't all work the first time. Refine your settings in the xml files and iterate on the above steps until all of them work without error. If you get stuck try the cesm forum: <u>https://bb.cgd.ucar.edu/cesm/</u> Suggestion: CESM2.1 uses python versions between 3.7 and 3.9 - you may need to create a virtual environment using pip or conda if your python version is newer.



Once you have successfully built and submitted a cesm case:

- Build the cprnc tool used for comparing netcdf files.
  - git clone <u>https://github.com/ESMCI/cprnc</u>
  - $\circ$  cd cprnc
  - Follow instructions in README file.
  - Put the resulting cprnc executable in the directory specified by CCSM\_CPRNC in config\_machines.xml
- You are now ready to run the scripts\_regression\_tests
  - cd cime/scripts/tests
  - ./scripts\_regression\_tests.py



#### Testing your port: Running the ensemble consistency test

- See the README in cesm/cime/tools/statistical\_ensemble\_test
- The statistical ensemble test compares results of 3 runs done on your machine to an ensemble of runs computed on NCAR's cheyenne (retired).
- If your runs fit within the ensemble the test passes



• Upload completed runs to https://docs.cesm.ucar.edu/models/cesm2/verification/



Post to the CESM forum: <a href="https://bb.cgd.ucar.edu/cesm/">https://bb.cgd.ucar.edu/cesm/</a>

Ask a question in slack: cesm2.slack.com

Open an issue in github:

- <u>https://github.com/ESMCI/cime/issues</u>
- https://github.com/ESCOMP/CESM/issues/
- ... (for each component model)

Please only use github issues with authorization by a CESM developer.



# **Questions**?