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• Research platform for understanding of best 
practices for training and operating global and 
regional AI weather prediction / climate models

• Platform Features
• Integrated pre-processing for reanalysis, 

reforecast, or model data
• Library of existing and new PyTorch neural 

network weather prediction architectures
• Scalable training and inference on NCAR HPC
• Analysis tools and plotting

• Novel advances
• WXFormer architecture
• More physically informed inputs
• Stable hourly global model out to 10 days
• Spectral normalization and new padding 

stabilizes multiple architectures
• Physical constraints improve precipitation and 

other state variables
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• Single-step training
– Predict the next timestep (1 or 6 hours) 

and backpropagate
– 1 sample per GPU; 16 GPUs total
– Loss: latitude-weighted MSE
– Gradient checkpointing used to reduce 

memory usage (at expense of 
computation)

• Multi-step training
– Run model forward in time multiple 

steps and accumulate gradient against 
truth data along trajectory

– Backpropagate gradients through time 
to update weights

– Start with shorter steps and extend 
length up to 3 days (6-hour model) or 2 
days (1-hour model)

– Necessary for stable and accurate 
rollouts

Training Challenges
• Setting up PyTorch to use MPI and NCCL
• Chunking input data shapes
• Correct padding for across latitude and 

longitude
• Stabilized autoregressive prediction via 

spectral normalization

Training Challenges / Solutions: 



Emulating CAM 6 (CESM 2.1.5)

1) Conduct a 35-year FHIST run (1979-2014) of 
CAM6 in CESMv2.1.5

2) Collect 6-hourly data
3) Compute Total Water + Convert to Flux forms
4) Gather Static Forcing Data
5) Package in yearly Zarr data structures

Data Prep Workflow



Training Routine: 
• Train on 1 step prediction for 150 epochs on 16 Derecho GPUS (~1.5 days) 

• Do not enforce physical constraints 
• Train & Fine-Tune on 2 step prediction for 90 “epochs” on 1 Derecho GPU (~.5 days) 

• Activate physical constraints 
• Initially validate on 1 or 2 step prediction skill using RMSE as a metric. 
• Fine-tune validation on a 1-year climatology run conducted between epochs compared to a 10-

year climatology. 

CAMulator

- O1000 lines of code
- 751,134,146 parameters

- 2.86535 GB
- 0.428775321% of GPT-3



Model Inference
• 480 Model years / day on a single CASPER GPU node (with 6-hourly I/O) 
• CAM6 @ identical resolution ~14 model years / day on 10 nodes. 
• ~400x speed up

CAMulator

- O1000 lines of code
- 751,134,146 parameters

- 2.86535 GB
- 0.428775321% of GPT-3



Let’s Look at some 35 year runs [~90 minutes to complete]:

Adding a ‘pertlim’ 



CAMulator



Developing Precip. Climatology
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Annual Biases:



Annual Biases:



Seasonal Cycle T2m:



Effective Resolution (model smoothing) – 500mb:



ENSO Precipitation Response; Composite of 8 strongest Niño’s – Niña’s
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CAM6 CAMulator

MJO propagation over Maritime continent



CAM6 CAMulator

MJO propagation over Maritime continent

Precipitation (color fill); U850 winds (contour)



Current Configured Run Scenarios (SST driven):

• 1979, 2000, 2010 Climatology Run
• 1979-2014 historical SST case 
• Coupled SST cases (35 years) 
• Year 2000, +2K, +4K runs 



Working out of training sample: 

What if we 
force the 

model with 
increased SST 

runs?   
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CAMulator (10 years):

CAM (1 year):



Current / Future Projects 
• Easy / Calibrated weather→ seasonal ensemble creation

• Stochastic backscatter + CRPS based training. 
• this gets us up to 50 members per 40g GPU → ~1000 model years per day 

• Plugging into existing NCAR/community verification suites (cupid, ADF, mdtf)
• CO2 forcing scenarios 
• Score-based diffusion GenAI fields.
• ERA5 nudging/improvement 
• Super modeling 
• Handle ice/sea-ice better
• Ocean, Land, Sea-Ice emulation 
• Dynamic model coupling 
• Improvements to validation, visualization routines
• Improvement to grid representation 

Thanks Dhamma!



Questions?
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