

# Updates on unified turbulence and convection parameterization: CLUBB+MF

AMWG 2025 Winter Working Group Meeting

<sup>1</sup>Adam Herrington, <sup>2,3</sup>J. Teixeira, <sup>1</sup>J. Bacmeister, <sup>3</sup>X. Jiang, <sup>3</sup>M. Chinita, <sup>2</sup>M. Kurowski, <sup>4</sup>M. Witte, <sup>2</sup>K. Suselj, <sup>3</sup>R. Storer

<sup>1</sup>NSF National Center for Atmospheric Research, Boulder, Colorado <sup>2</sup>NASA Jet Propulsion Laboratory, Los Angeles, California <sup>3</sup>University of California, Los Angeles, California <sup>4</sup>Naval Postgraduate School, Monterey, California



## EDMF and moist convection

- Eddy Diffusivity represents mixing by small scale turbulence
  - Downgradient diffusion
- Mass Fluxes represent mixing due to asymmetric turbulence (plumes)
  - PDF of surface layer thermodynamics to initialize explicit ensemble of plumes
  - Individual plumes undergo stochastic lateral entrainment

$$\varepsilon_{u_n}(\Delta z) = \frac{\varepsilon_0}{\Delta z} \mathscr{P}\left(\frac{\Delta z}{L_{\varepsilon}}\right)$$

Entrainment length scale <



Suselj, Teixeira & Chung, JAS, 2013 Suselj, Kurowski & Teixeira, JAS 2019



## CLUBB+MF

- Eddy Diffusivity represents mixing by small scale turbulence
  - High-order turbulence model CLUBB
- Mass Fluxes represent mixing due to asymmetric turbulence (plumes)
  - PDF of surface layer thermodynamics to initialize explicit ensemble of plumes
  - Individual plumes undergo stochastic lateral entrainment

$$\varepsilon_{u_n}(\Delta z) = \frac{\varepsilon_0}{\Delta z} \mathscr{P}\left(\frac{\Delta z}{L_{\varepsilon}}\right)$$

Entrainment length scale <



Suselj, Teixeira & Chung, JAS, 2013 Suselj, Kurowski & Teixeira, JAS 2019



## Version history

- CLUBB+MF (shlw)
  - Fixed entrainment length scale (L<sub>a</sub>) 0
  - Witte et al. (2022) 0
- CLUBB+MF (shlw+deep)
  - Dynamic L<sub>e</sub> function of environ. RH Paper in progress 0
- **CLUBB+MF** Aero
  - Dynamic L<sub>e</sub> function of plume history Inclusion of downdrafts ensemble 0
  - 0
  - Cold pool feedback on L 0
  - Cloud-aerosol interactions 0
  - Inclusion of tracer transport Ο
  - Convective initiation aloft  $\cap$





Figure 1. CAM single column model experiments of the Large-Scale Biosphere-Atmosphere case (LBA), representing the diurnal cycle of moist convection over land. (Left) Top of the plume ensemble, and (right) cumulative precipitation rate. LES refers to large-eddy simulation reference, ZM refers to the operational deep convection scheme in CAM, whereas v0, v1, v1-coldpool and v1pp-coldpool refer to different configurations of CLUBB+MF discussed in the text.





NCAR is sponsored by National Science Foundation CGGD

#### AMIP Runs

- L32 cesm2 (cmip6)
- 🖵 🛛 L58 cam7
- L58 clubb+mf (shlw+deep)
- 🖬 🐘 L58 clubb+mf aero
- liquid water path ERA5 & MAC-LWP (courtesy G. Elsaesser)
- ice water path
  - large disagreement among remote sensing products (Duncan and Eriksson 2018)
  - ERA5 & MERRA only products that omit condensates
- clubb+mf aero better reproduces
   IWP magnitude in reanalysis

## cloud water bias



Due to coupling MF updraft velocity to ice nucleation

AMIP Runs (1998-2017)

L58 cam7
L58 clubb+mf aero

### cloud water in the vertical



### cloud water and radiation

L58 clubb+mf aero - OBS

ERA5 (mean diff, RMSE, patt corr): 6.506 W/m2,

L58 cam7 - OBS

WP (g/m2

CGCD

120 90

60 30

-30 -60 -90 120

-40

## clubb+mf convection vs. cam7 convection

#### clubb+mf:

- Warms & moistens the tropical atmosphere compared to CAM7
- Deep Cu is deeper; detrainment occurs much higher than in CAM7
- Magnitude of Deep Cu mass fluxes similar to ZM
- Competitive tropical variability (AMIP)



## Questions?

## cloud water bias in the vertical



cloud liquid (1e-3 g/kg)





## cloud water and radiation

-30

-60 -90 120

-10 -20 -30 -40 -50

-10 -20 -30 -40 -50

15

-10

-15

Larger cloud radiative forcing coincides with larger cloud water

