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Wednesday, March 13, 2024

Time Agenda Presenter Presentation file
7:00 AM | Workshop registration and breakfast
8:15AM | Introduction and welcome
8:30 AM | Session 1: Overview
8:30 AM (Invited) Subtle lessons from the art of model-observation Gavin Schmidt, NASA GISS
confrontations*
8:50 AM | (Invited) Challenges in comparing observed and model-simulated Clara Deser, NCAR
climate trends on regional scales
9:10 AM Open discussion




All observations and comparisons
are based on models too

(It's models all the way down!)




Models all the way down: CERES broadband fluxes
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1. CERES observes radiation over a narrow solid angle (radiance) but
reports hemispherically-integrated fluxes.
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Models all the way down: CERES broadband fluxes
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1. CERES observes radiation over a narrow solid angle (radiance) but
reports hemispherically-integrated fluxes.

2. CERES instruments respond differently to different wavelengths of
radiation but report broadband shortwave and longwave fluxes.

CERES Spectral Response Characterization
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Water Vapor Trends (with CMIP6 to 2014)

UMBC CLIMCAPS AIRSV7

Models all the way down: Reanalysis and Satellite Retrievals
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Models all the way down: Reanaly5|s and Satelllte Retrlevals

2 Reanalysis and satellite
retrieval products disagree
even when ingesting the
same direct observations.
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Models all the way down: Reanalysis and

2 Reanalysis and satellite
retrieval products disagree
even when ingesting the
same direct observations.

2 The differences between
data products imply large,
unquantified structural
uncertainties.

Pressure (hPa)

Satellite Retrievals
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Water Vapor Trends (with CMIP6 to 2014)
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2 Reanalysis and satellite
retrieval products disagree
even when ingesting the
same direct observations.

ellite Retrievals

i

Water Vapor Trends (with CMIP6 to 2014)

UMBC

CLIMCAPS AIRSV7
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Definitional differences hinder fair comparisons:

Observed radiances are not comparable with model radiative fluxes
Differences in diurnal sampling, spatial resolution, etc.
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easier for climate models?




Challenges to satellite-model comparisons
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Definitional differences hinder fair comparisons:
- Observed radiances are not comparable with model radiative fluxes
- Differences in diurnal sampling, spatial resolution, etc.

Can we make spectral radiation comparisons
easier for climate models?
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Simulating Spectral Radiances in Climate Models with COSP
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Climate Model
(e.g. CESM2)

1.  Climate model
simulates the
coupled climate
system.

Climate model :

- Coupled
atmosphere,
ocean, land, and
sea ice
components




Simulating Spectral Radiances in Climate Models with COSP

Climate Model

(e.g. CESM2)
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1.  Climate model
simulates the
coupled climate
system.

2. COSP reads the
model state (e.g.q, T
profiles) and computes
simulated satellite
output.

Climate model :

- Coupled
atmosphere,
ocean, land, and
sea ice
components

COSP:

- Used by multiple
modelling centers

- Sub-grid sampling

- Diurnal sampling
for satellite orbits




Radiative

Climate Model Teanster
e.g. CESM2
(€.9. CESM2) (RTTOV)

1. Climate model 2. COSP reads the 3. RTTOV simulates
simulates the model state (e.g.q, T all-sky and clear-sky
coupled climate profiles) and computes radiances for
system. simulated satellite requested instruments

output. + channels.

Climate model : COSP: RTTOV:

- Coupled - Used by multiple - Fast, accurate
atmosphere, modelling centers radiative transfer
ocean, land, and - Sub-grid sampling model
sea ice - Diurnal sampling - Instrument-specif
components for satellite orbits iC




Output: “Satellite-like” spectra with intuitive meaning
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Output: “Satellite-like” spectra with intuitive meanmg
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Output: Model evaluation against direct satellite observations
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Output: Model evaluation against direct satellite observations
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Output: Model evaluation against direct satellite observations

Tropical Upper-troposphere Channel
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Mid-latitude Upper-Troposphere Channel
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Radiance
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COSP-RTTOV makes spectral radlatlon comparlsons easy

a Simulate “satellite-like” spectral radiation directly in CESM2
0 Evaluate model performance against direct observations
a Support future satellite missions by simulating them ahead of time.

Preprint here:

S,
< SO TR AU AL LR nln|nlmlmnmmlnmtl lmnnulumnmmnmmu
= lllllllllll|||]ll|l!|lllll'llll e e e
fD
o T T T T
1984 1992 2000 2008 1984 1992 2000 2008 1984 1992 2000 2008 1984 1992 2000 2008
Year Year Year Year

.>

100
PREFIRE Radlance(me 2cm-1sr1) 2010-12

jonah.shaw@colorado.edu
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Output: “Satellite-like” spectra
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Output: “Satellite-like” spectra consistent with GCM radiation fields

E—

— —

20.0 - 28.6um*
Clear-Sky All-Sky

Mean Absolute Error: 0.19 Mean Absolute Error: 0.52

IS

(@)
H
(9

SN

SN
B
o

IS
(@)

COSP-RTTOV Spectral Flux (Wm~2)
W
9]

COSP-RTTOV Spectral Flux (Wm~2)
B
N

40 42 44 46 25 30 35 40 45
RRTMG-LW Spectral Flux (Wm™2) RRTMG-LW Spectral Flux (Wm~2)

*Comparison with RRTMG radiative fluxes uses SRFs with 0.3cm-1 spacing and a 6-point gaussian quadrature.



“Satellite-like” diurnal sampling: Implement
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User specifies local
times and swath widths.

Simulators only run on
appropriate model :
gridcells.

Reduced simulator calls
reduce computational
cost.




“Satellite-like” dlurnal samplmg Results

Daytime Orbits
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Tropical Surface Temperature Channel Mid-latitude Surface Temperature Channel
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Radiance Trend
(mW/m2/sr/cm™! per year)

2005

Year
2010 2015 2020

=
)

=
=

AN N TN A N TN N TN A AN N A M B
1

Pre-Industrial Range
—— AIRS

| I I I I | I
5 10 15 20
Trend Duration (years)

2005

Year
2010 2015 2020

AN [T YT N AN N T N N AN B

0.3 b. \\

0.2
0.1

0.0+

Radiance Trend
(mW/m?/sr/fcm™! per year)

| | |
2 82 B
w Nk

Pre-Industrial Range
— AIRS

I | I I I I | I I I I |
10 15 20
Trend Duration (years)

32



Brightnhess Temperature (deg. K}
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COSP-RTTOV makes spectral radiation comparisons easy

e e

= e

0 Simulate “satellite-like” spectral radiation directly GCMs
a All-sky and clear-sky fields

a Experiment design (wind-nudging) allows evaluation of short records

jonah.shaw@colorado.edu
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Challenges to satellite-model comparisons

1. Definitional differences hinder fair comparisons:

- Obs COSP-RTTOV satellite simulator five fluxes
- Differences in diurnal sampling, spatial resolution, efc.

2. Internal climate variability:
- Large year-to-year differences in climate fields
- Most trusted observational records are 5+ years (10+ years even better)



Flexibly simulating spectral in global climate models

1. In-line global model radiative transfer tool (COSP-RTTOV)
2.  GCM experiment design



Wind nudging: Constrain atmospheric circulation to observations
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Wind nudging: Constrain atmospheric circulation to observations

a Models capture internal
variability well when wind
nudging is used.

a Nudged simulations enable
meaningful comparisons
with short observational
records.

2m air temperature anomaly (K)
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— OBS

3 - LENS
—— aNUDGE
—— LENSmean

1980 1985 1990 1995 2000 2005 2010 2015

Roach and Blanchard-Wrigglesworth (2022)
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Simulating PREFIRE and AIRS in atmosphere-

only simulations

——— e

Atmosphere-only simulation beginning in 1979:
a SSTs and sea ice boundary conditions come from observations (ERSST)

Model winds “nudged” towards ERAS reanalysis (methods of Gilbert et al.):
a Nudging domain: 60-90N, 850hPa and above
a Boundary layer still evolves freely



Simulating PREFIRE and AIRS in atmosphere-only

simulations

Atmosphere-only simulation beginning in 1979:
2 SSTs and sea ice boundary conditions come from observations (ERSST)

Model winds “nudged” towards ERAS reanalysis (methods of Gilbert et al.):

2 Nudging domain: 60-90N, 850hPa and above
2 Boundary layer still evolves freely

Simulate all-sky and clear-sky radiances + BTs for a subset of AIRS and
PREFIRE channels

Can extend simulations into the future as SST and reanalysis is released.
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Challenges to satellite-model comparisons
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1. Definitional differences hinder fair comparisons:

- Obs COSP-RTTOV satellite simulator

Five fluxes

- Differences in diurnal sampling, spatial resolution, etc.

2. Internal climate variability:

- Larg AMIP simulations with wind nudging

bﬁperatu res, etc

- Most trusted observational records 5+ years (10+ years even better)
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Comparing spectral radiation with models is valuable...
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A strict test in climate modeling with spectrally resolved radiances:
GCM simulation versus AIRS observations

Yi Huang,' V. Ramaswamy,” Xianglei Huang,? Qiang Fu,* and Charles Bardeen’
Received 26 July 2007; revised 12 November 2007; accepted 20 November 2007; published 28 December 2007.

A Synopsis of AIRS Global-Mean Clear-Sky Radiance Trends
From 2003 to 2020

Xianglei Huang' **, Xiuhong Chen' ", Chongxing Fan' ', Seiji Kato? 2, Norman Loeb? -,
Michael Bosilovich® **, Seung-Hee Ham* ', Fred G. Rose* "/, and Lawrence L. Strow®

Greenhouse Gas Forcing and Climate Feedback Signatures
Identified in Hyperspectral Infrared Satellite Observations

Shiv Priyam Raghuraman'? *, David Paynter® (', V. Ramaswamy'? (*/, Raymond Menzel** ',
and Xianglei Huang®
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Comparing spectral radiation with models is valuable...and difficult!
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A strict test in climate modeling with spectrally resolved radiances:
GCM simulation versus AIRS observations

Yi Huang,' V. Ramaswamy,” Xianglei Huang,? Qiang Fu,* and Charles Bardeen’
Received 26 July 2007; revised 12 November 2007; accepted 20 November 2007; published 28 December 2007.

A Synopsis of AIRS Global-Mean Clear-Sky Radiance Trends
From 2003 to 2020

Xianglei Huang' **, Xiuhong Chen' ", Chongxing Fan' ', Seiji Kato? 2, Norman Loeb? -,
Michael Bosilovich® **, Seung-Hee Ham* ', Fred G. Rose* "/, and Lawrence L. Strow®

Greenhouse Gas Forcing and Climate Feedback Signatures
Identified in Hyperspectral Infrared Satellite Observations

Shiv Priyam Raghuraman'? *, David Paynter® (', V. Ramaswamy'? (*/, Raymond Menzel** ',
and Xianglei Huang®

Models do not produce spectral radiation fields
for comparison with observations. "




1. Definitional differences hinder fair comparisons:

- Observed radiances are not comparable with model radiative fluxes
Differences in diurnal sampling, spatial resolution, etc.
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2. Internal climate variability:
- Large year-to-year differences in climate fields
- Most trusted observational records are 5+ years (10+ years even better)



Challenges to satellite-model comparisons
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1. Definitional differences hinder fair comparisons:
- Observed radiances are not comparable with model radiative fluxes
Differences in diurnal sampling, spatial resolution, etc.

2. Internal climate variability:
Large year-to-year differences in climate fields
Most trusted observational records are 5+ years (10+ years even better)

Can we make spectral radiation comparisons
easier for climate models?




Flexibly simulating spectral in global climate models
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1. In-line global model radiative transfer tool (COSP-RTTOV)
2.  GCM experiment design



1. In-line global model radiative transfer tool (COSP-RTTOV)
2. GCM experiment design
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Climate model
supplies
instantaneous
gridcell-average cloud,
temperature, and
trace gas profiles

User supplies output
variables, channels,

and viewing geometry

for each instrument
simulated using
RTTOV.

Optionally mask data
using supplied
overpass times and
swath widths for each
simulated instrument.

User optionally
supplies satellite orbit
(overpass local time
and swath widths) for
each instrument.

RTTOV radiative
transfer calculations
simulate spectral
radiances, brightness
temperatures, and
reflectances.

COSP2 subgrid
sampling and
instrument simulators

Grey: New functionality in COSP-RTTOV

COSP outputs for
definition-aware
comparisons with

observations
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