	Secondary GWP 00	Results 0000000	End of presentation

A simple parameterization of the effects of secondary GWs due to orographic primary GWs and its impacts in the upper mesosphere of whole atmosphere models

In-Sun Song

(funded by G-LAMP project RS-2024-00442483)

in collaboration with Byeong-Gwon Song and Nick Pedatella

Mathematical Atmospheric Physics Laboratory Department of Atmospheric Sciences, Yonsei University

Atmosphere Model, Chemistry Climate, Earth System Prediction, Climate Variability & Change, and Whole Atmosphere Working Group Meeting 2025 (NSF NCAR Mesa Lab, 3-6 Feburary 2025)

6 February 2025

Introduction •	Secondary GWP 00	Results 0000000	End of presentation
Introduction			

High-top models' common discrepancies against OBS

- Large easterly biases in the winter polar upper mesosphere (Dempsey et al., 2021; Harvey et al., 2022; Hindley et al., 2022).
- Biases are not fully corrected by OBS DA, and they are often attributed to GW parameterizations (GWPs) in high-top models (McCormack et al., 2022).
- The easterly biases do not seem to be present in models where orographic secondary GWs (OSGWs) are explicitly simulated (Becker and Vadas, 2018).
- Orographic primary GWs (OPGWs) are much larger in amplitude than non-orographic primary GWs (NOPGWs), and thus OSGWs may have major impacts in the polar mesosphere compared to nonorographic secondary GWs (NOSGWs).
- A simple columnar parameterization of the effects of OSGWs are proposed and its impacts in the mesosphere are presented using mechanistic model and WACCM6.

	Models and GWPs	Secondary GWP 00	Results 0000000	End of presentation
Models and G	WPs			

- Models
 - Mechanistic model: System for Whole Atmosphere Dynamics Researches (SWAD, Song 2023)
 - CAM3 dynamical core (Williamson and Olson, 1994), Held-Suarez-type radiation, Lindzen-type GWP (NASA GEOS5-6) for OPGWs (McFarlane, 1987) and NOPGWs (see below), molecular diffusion.
 - 20-yr perpetual JAN & JUL simulations at T42 resolution

- SC-WACCM6 (CAM6 physics) in CESM 2.2.0 (Compset: FWsc2000climo)
 - Lindzen-type GWP for mesoscale mountain ridges (Scinocca and McFarlane, 2000), fronts and convection.
 - 10-yr simulations at 2-deg resolution

		Secondary GWP ●0	Results 0000000	End of presentation
Secondary GM	/P			

- Orographic secondary GWD
 - Launched at levels above orographic primary GWs produce momentum forcing.
 - Seven source levels from 300–0.1 hPa
 - Vertical reduction (ramping) of intermittency factor for primary orographic and nonorographic GWDs.
 - ▶ 50% or 10% of original value (0.125) above z = 75 km
 - Justification needed, and discussed later

		Secondary GWP ○●	Results 0000000	End of presentation
Secondary GW	′P 11			

- Orographic secondary GWD
 - Two-wave scheme: Intrinsic phase speeds (ĉ) of orographic secondary GWs are ±60 m s⁻¹ (ground-based phase speed = U ± ĉ) in the sense of the orographic primary GWD.
 - ▶ Consistent with $\lambda_z \approx$ 18–25 km from McMurdo OBS and modeling results (Vadas and Becker, 2018).
 - Filled arrow: Horizontal wind, Hollow arrow: GWD due to OPGWs.

Momentum flux magnitude for each is about 5% of the maximum of nonorographic GW flux in SWAD (0.0064 N m⁻²× 5% = 0.00032 N m⁻² at each source level).

	Secondary GWP 00	Results ●0000000	End of presentation
Results I			

Zonal-mean zonal wind in January (SWAD)
(a) SPARC (Ref Clim), (b) CTRL, (c) ε = 50% above z > 75 km, (d) ε = 10% above z > 75 km, and (e) No orographic secondary GWD for ε = 10% above z > 75 km

		Secondary GWP	Results 0●000000	End of presentation
Results II				
► Zona	l-mean zonal wind	d in July (SWAD)		

(a) SPARC (Ref Clim), (b) CTRL, (c) $\epsilon = 50\%$ above z > 75 km, (d) $\epsilon = 10\%$ above z > 75 km, and (e) No orographic secondary GWD for $\epsilon = 10\%$ above z > 75 km

	Secondary GWP 00	Results 00●00000	End of presentation
Results III			

Zonal-mean zonal wind in January (SC-WACCM6)

• (a) SPARC (Ref Clim), (b) CTRL, (c) $\epsilon = 50\%$ above z > 75 km, (d) $\epsilon = 10\%$ above z > 75 km, and (e) No orographic secondary GWD for $\epsilon = 10\%$ above z > 75 km

	Secondary GWP 00	Results 000●0000	End of presentation
Results IV			

Zonal-mean zonal wind in July (SC-WACCM6)
(a) SPARC (Ref Clim), (b) CTRL, (c) € = 50% above z > 75 km, (d) € = 10% above z > 75 km, and (e) No orographic secondary GWD for € = 10% above z > 75 km

	Secondary GWP 00	Results 0000●000	End of presentation
Results V			

- Zonal-mean temperature in January (SC-WACCM6)
 - (a) SPARC (Ref Clim), (b) CTRL, (c) e = 50% above z > 75 km, (d) e = 10% above z > 75 km, and (e) No orographic secondary GWD for e = 10% above z > 75 km

```
Zonal-mean temperature (WACCM6) in January (\epsilon_{prim} = 0.125)
```


	Secondary GWP 00	Results 00000●00	End of presentation
Results VI			

- Zonal-mean temperature wind in July (SC-WACCM6)
 - ► (a) SPARC (Ref Clim), (b) CTRL, (c) \(\epsilon = 50\)% above z > 75 km, (d) \(\epsilon = 10\)% above z > 75 km, and (e) No orographic secondary GWD for \(\epsilon = 10\)% above z > 75 km

```
Zonal-mean temperature (WACCM6) in July (\varepsilon_{prim} = 0.125)
```


	Secondary GWP 00	Results 000000●0	End of presentation
Results VII			

Zonal-mean OSGWD in January (SWAD and SC-WACCM6)

- $\blacktriangleright\,$ (a) $\epsilon=50\%$ above z>75 km, (b) $\epsilon=10\%$ above z>75 km
- Maximum of $|\text{GWD}_{\text{OSGW}}|$ is about 20 m s⁻¹/day

	Secondary GWP 00	Results 0000000●	End of presentation
Results VIII			

Zonal-mean OSGWD in July (SWAD and SC-WACCM6)

- $\blacktriangleright~$ (a) $\epsilon=50\%$ above z>75 km, (b) $\epsilon=10\%$ above z>75 km
- Maximum of $|GWD_{OSGW}|$ is about 20 m s⁻¹/day

	Secondary GWP 00	Results 0000000	Summary •	End of presentation
Summary				

- Simple parameterization of OSGWs
 - A simple parameterization of OSGWs is presented and tested in mechanistic model and full GCMs (SWAD and SC-WACCM6).
 - OSGWs can help reduce the eaterly biases in the upper mesosphere above the winter polar vortex.
 - OSGWs can make cold summer polar mesopause warmer: Weaker pole-to-pole circulation
 - Impacts may depend on the vertical ramping of the intermittency factors for primary GWs that needs justification.
 - Strong turbulent diffusion in the mid-to-upper mesosphere
 - Horizontal spread (dispersion) of primary GWs generated by point sources in the troposphere
 - Justification is needed, but combination of the ramping and parameterization for OSGWs can have some good impacts in the MLT regions.
- Future works: Impacts in residual circulations, eddy diffusion, planetary and tides in WACCM and WACCM-X.

		Secondary GWP 00	Results 0000000	End of presentation ●000
End of present	tation			

Thank you for attention

	Secondary GWP 00	Results 0000000	End of presentation ○●○○
Backup I			

- Quasi-biennial oscillation in SWAD
 - Increase of QBO period due to eastward zonal momentum forcing in the equatorial lower stratosphere (12 month → 25 month (max))

$$\frac{\partial u}{\partial t} = \dots + 0.242 \text{ m s}^{-1} \text{ day}^{-1} \exp[-(\phi^2/15^2)] \exp[-(z-25)^2/7^2]$$

	Secondary GWP 00	Results 0000000	End of presentation
Backup II			

Zonal-mean temperature in January (SWAD)
(a) SPARC (Ref Clim), (b) CTRL, (c) € = 50% above z > 75 km, (d) € = 10% above z > 75 km, and (e) No orographic secondary GWD for € = 10% above z > 75 km

```
Zonal-mean temperature (SWAD) in January (\epsilon_{prim} = 0.125)
```


	Secondary GWP 00	Results 0000000	End of presentation 000●
Backup III			

Zonal-mean temperature in July (SWAD)
(a) SPARC (Ref Clim), (b) CTRL, (c) € = 50% above z > 75 km, (d) € = 10% above z > 75 km, and (e) No orographic secondary GWD for € = 10% above z > 75 km

