

Tuning the QBO in CESM3-WACCM7

Mijeong Park, Rolando Garcia, Francis Vitt, Sasha Glanville, Adam Herrington, Julio Bacmeister, Rich Neale, Peter Lauritzen, Yuanpu Li and Chih-Chieh-Jack Chen

NSF National Center for Atmospheric Research (NSF NCAR)

Special thanks to Nick Davis

CESM Winter Working Group Meeting, February 3-6, 2025

QBO amplitude max (~ 30 hPa)

The vertical resolution is 500 m above the boundary layer and through the lower stratosphere, and then decreases slowly with altitude.

QBO Teleconnection

cf. (Holton-Tan effect)

Cf) EPFD -> index of refraction -> eddies from troposphere -> TEM circulation -> warms the midlatitude lower stratosphere

Successful simulation of the QBO: adequate horizontal and <u>vertical resolution</u>, a realistic simulation of tropical convection and a means of describing the effects of mesoscale gravity waves.

Can we run WACCM 2° to simulate the QBO?

WACCM 5.4-110L, 1° (0.95°×1.25°)

(Garcia and Richter, 2019)

WACCM6-110L, 2° (1.95°×2.25°)

Composites of acceleration (due to EP flux divergence + parameterized GW drag)

QBO amplitude & phase

WACCM6-110L vs. 135L

WACCM6-110L-1°

WACCM6-110L-2°

WACCM7-135L-SE-2°

Stronger amplitude (1°)

Much weaker amplitude (30-40 km)

Jul-13-2023 WAWG

QBO amplitude & period

(WACCM-110L vs. 135L)

QBO (SE-135L) – Reasonable period, weak amplitude with max at 5 hPa.

Jul-13-2023 WAWG

Effect of HB diffusion (Holtslag and Beljaars, 1989)

The effect of adding HB diffusion was unexpected: QBO was severely degraded

Holtslag, A. A. M. and Beljaars, A. C. M.: 1989, 'Surface Flux Parameterization Schemes: Developments and Experiences at KNMI',*Proceedings of the ECMWF Workshop on Parameterization of Fluxes Over Land Surface*, ECMWF Reading UK, pp. 121–147. (Also available from KNMI as Sci. Rep. 88-06, De Bilt NL, 27 p.)

Sep-07-2023 WAWG

Exp: CAM7+HB diffusion (HB diffusion off 50 levels, 5 levels)

Changing the range of altitude where HB diff operates does not change the QBO period Limiting HB diffusion to the sponge layer slightly increases the QBO amplitude **Remove background and stable mixing (HB diffusion on Ri ≤ 0)**

May-26-2024-WAWG

The role of the Zhang & McFarlane (ZM) modification - ZM2

The high-vertical resolution grid with additional levels in the PBL, the standard version of ZM (**ZM1**) is no longer relevant. Therefore new ZM scheme (**ZM2**) is incorporated in CAM7.

CAM6 physics produces QBO behavior similar to WACCM6-FV 110L

Jun-13-2024 WAWG

(ZM2 vs. ZM1)

maxq₀ & hdepth

model setup	maxq ₀	hdepth
ZM2-135L	3.23± <mark>34.32</mark>	<mark>0.33</mark>
ZM1-135L	3.20±16.37	0.60
ZM1-110L	3.00±22.94	0.43

Mean **maxq**₀ is similar in all three cases; ZM2-135L is more variable than the other two cases

hdepth is substantially smaller in ZM2-135L vs. ZM1-135L; in ZM1-110L, it is intermediate compared to the two 135L runs

Aug-15-2024 WAWG

Gravity wave scheme

(Yuanpu's fix)

Much faster QBO

Tuning - Beres Parameter

(Yuanpu's fix)

Increase in efficiency parameter increases the QBO amplitudes (more so at high altitudes) and shortens the period

Tuning - Conversion Factor (CF)

Tag160_beres0.65_YL_CF10 (slowest) Tag160_beres0.65_YL_CF12 (right) Tag160_beres0.65_YL_CF16 (fast) Tag160_beres0.65_YL (CF=20, default, fastest)

Increase in CF speeds up the QBO CF impact on QBO amplitude is not linear

(CAM7-1DEG vs. WACCM7-2DEG)

QBO is slower and its amplitude is stronger in CAM7(MT)-1DEG

CAM7(MT)-1DEG		WACCM7-1DEG		WACCM7-1DEG	
Simone's run (beta04)		CAM6_4_055		CAM6_4_055-rdg0.5	
&gw_drag_nl alpha_gw_movmtn effgw_beres_dp	= 0.02 D0 = 0.20 D0	&gw_drag_nl alpha_gw_movmtn effgw_beres_dp	= 0.01 D0 = 0.25 D0		
effgw_rdg_beta	= 0.5 D0	effgw_rdg_beta	= 1.0 D0	effgw_rdg_beta	= 0.5 D0
effgw_rdg_beta_max	= 0.5 D0	effgw_rdg_beta_max	= 1.0 D0	effgw_rdg_beta_max	= 0.5 D0
front_gaussian_width frontgfc	= 30.D0 = 3.00 D-15	front_gaussian_width frontgfc	= 30.D0 = 3.00 D-15		

effgw_beres_dp (convective gravity wave efficiency) effgw_rdg_beta (orographic gravity wave efficiency) effgw_rdg_beta_max

/glade/campaign/cesm/cesmdata/cseg/runs/cesm2_0/f.e30_alpha04a.FCts4MTHIST.ne30_L93.cmip7_volc/CaseDocs/atm_in

17

QBO Amplitude

(CAM7 & WACCM7 1DEG)

CAM7(MT)-1DEG Simone's run (beta04)

WACCM7-1DEG

CAM6_4_055

CAM7 – larger amplitude

effgw_rdg_beta_max = 0.5

WACCM7-1DEG

CAM6_4_055-rdg0.5

QBO Period & Amplitude

(WACCM7-1DEG)

Second maximum in amplitude disappears with **effgw_rdg_beta=0.5**

Summary

- 1. Much improved understanding of the QBO and the physical parameters controlling the QBO in WACCM7.
- 2. Work is not done yet.
- 3. Will explore ways to improve the QBO even further.
- 4. Opportunity for exciting science!