H Bl Massachusetts /// RK
I Institute of P//L_

Technology CLIMATE SOLUTIONS

Biogenic Emissions Modulate the Tropospheric

Hydroxyl Radical (OH) Response to Climate Warming

Qindan Zhu
MIT Houghton Postdoc Fellow



The climate feedback of methane is determined by both natural

methane emissions and OH chemistry

/\ « Methane natural emissions.
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How does OH respond to climate warming?

[ Direct response: meteorology.

Climate
warming

0 Indirect response: biogenic
volatile organic compounds
(BVOC) emissions.
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The coupling between climate dynamics and emissions makes

interpreting OH challenging

Emissions (103 in total, Chemistry Sea surface temperature (SST)
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0 Computationally intensive.
0 Hard to isolate the impact of
emissions/climate.

« CAM-Chem
« 0.94° x 1.25° x 30 vertical layers
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Build a step in the model hierarchy to study chemistry-climate

Interaction

>
< 0 _nli
AquaChem: B Fully coupled chemistry-climate model
: Q (CAM-Chem):
« Lower computational cost = . C tational :
 Detailed chemistry 8 omputational SXpensive
> » Detailed chemistry
@
o
S
Hierarchy in chemistry-climate model
Dynamics complexity
Aquaplanet configuration of CAM6 Atmospheric general circulation model
« Shorter integration time (CAMG)
* No Chemistry
Hierarchy in limate model
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AquaChem: a simplified chemistry-climate model retaining full

complexity in chemistry
CAM-Chem AquaChem

Annual zonal average

 Simplified dynamics

Sea surface « Hadley Cell

temperature » Upper tropospheric jet
(SST)
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AquaChem reproduces the contribution of individual OH

production and loss pathways simulated in CAM-Chem

 OH is at the steady state.
 [OH] = R(prod) / f(loss).

» Integrated between -60°
and 60° latitudes.

CAM-Chem AguaChem
7
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AquaChem reproduces the contribution of individual OH

production and loss pathways simulated in CAM-Chem

Others . :
H,0, + hv - 20H OH is at the steady state.
0.8 - O3 + HO, — OH « [OH] = R(prod) / f(loss).
* Integrated between -60°
NO + HO, - OH and 60° latitudes.
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Contribution of OH production
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CAM-Chem AquaChem
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AquaChem reproduces the contribution of individual OH

production and loss pathways simulated in CAM-Chem

10 5

, Others  OH is at the steady state.
. VOCs
0.8  [OH] = R(prod) / f(loss).
* Integrated between -60°
CH, and 60° latitudes.

o
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1

HO, (H,, H,0,, O,)

Contribution of OH loss

0 AguaChem: individual OH
co budget terms.
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Characterize the OH response to warming using idealized

+2 Kelvin SST experiments in AquaChem

OH response to +2K idealized

warming
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U U BVOC: biogenic volatile organic compounds

Meteorology BVOC emissions
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The meteorology and BVOC emissions impacts OH through

OH production and loss pathways, respectively

OH response to idealized warming Meteorology BVOC emissions
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Direct OH response to idealized warming is dominated by moistening

12

* OH production rate: 7.6-9.6%.

[
o
1

(00)
1

e ()]
1 1

Rel. changes in
OH production rate (%)

o
I
1
|
I

I
N

S Extfatrop Trobics N Ext'ratrop

12
Zhu et al., 2025, In prep



Direct OH response to idealized warming is dominated by moistening

12
OH primary production:

< 10- O; +hv - 0D + H,0 - 20H * OH production rate: 7.6-9.6%.
c U 84 * Primary production pathway:
o & 6.1-8.1%.
28 ©
ks » 7%/Kincrease in H,0
U-§ d (Clausius-Clapeyron).
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Temperature-sensitive BVOC emissions contributes to OH

losses through BVOC and its oxidation products

[
N
1

* OH loss frequency: 5.0-12.7%.
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Temperature-sensitive BVOC emissions contributes to OH

losses through BVOC and its oxidation products

[
N
1

* OH loss frequency: 5.0-12.7%.

[
o

e OH + BVOC reaction: 4.5% in the
tropics.

(00)

BVOC

Rel. changes in
OH loss frequency (%)
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BVOC oxidation products: oxygenated VOCs and CO
Zhu et al., 2025, In prep
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Temperature-sensitive BVOC emissions contributes to OH

losses through BVOC and its oxidation products

] « OH loss frequency: 5.0-12.7%.
<
£3 o Oxygenated « OH + BVOC reaction: 4.5% in the
ns o VOCs tropics.
o S BVOC
c O
- é’ 6 - « OH + oxygenated VOCs: 2.2% in
o 0 the tropics.
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T
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N —
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BVOC oxidation products: oxygenated VOCs and CO
Zhu et al., 2025, In prep
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Temperature-sensitive BVOC emissions contributes to OH

losses through BVOC and its oxidation products

_ ] « OH loss frequency: 5.0-12.7%.
X CO
£ o Oxygenated « OH + BVOC reaction: 4.5% in the
DT e pics.
O): 3 BVOC
c O
= q&_’ 6 - « OH + oxygenated VOCs: 2.2% in
“u the tropics.
9 S 4.
T « OH + CO reaction: 2.5-4.6%.
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BVOC oxidation products: oxygenated VOCs and CO
Zhu et al., 2025, In prep
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OH response to idealized warming depends on competing

processes through moistening and BVOC emissions

* Moistening: well-constrained.

« BVOC emissions: highly uncertain.



Take-away messages

Climate
warming

OH response to idealized
warming

|dealized chemistry-climate model
AquaChem.

Process-level understanding of OH
chemistry.

Moistening vs BVOC emissions.
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OH response to idealized warming depends on competing

processes through moistening and BVOC emissions
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OH response to idealized warming depends on competing

processes through moistening and BVOC emissions

10.0
@5 * Moistening: 6.8% to 8.5%.
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OH response to idealized warming depends on competing

processes through moistening and BVOC emissions
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« Moistening: 6.8% to 8.5%.

« Temperature-sensitive BVOC

emissions: -9.1% to -2.0%.

* OH response to idealized

warming: -1.0% to 4.9%.
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AquaChem reproduces the contribution of individual OH

production and loss pathways simulated in CAM-Chem

 OH is at the steady state.

* [OH] = R(prod) / f(loss).

o
©
1

* Integrated between -60°
and 60° |atitudes.

o
o
1

o
>

Primary OH production pathway
O; + hv » 0D + H,0 - 20H

Contribution of OH production

o
N

0.0~

CAM-Chem AguaChem
Zhu et al., 2025, In prep
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AquaChem reproduces the contribution of individual OH

production and loss pathways simulated in CAM-Chem

 OH is at the steady state.

* [OH] = R(prod) / f(loss).

o
©
1

* Integrated between -60°
NO + HO, - OH and 60° latitudes.

o
o

o
>

O; + hv - 0D + H,0 -» 20H

Contribution of OH production

o
N

0.0~

CAM-Chem AquaChem
Zhu et al., 2025, In prep

25



AquaChem reproduces the contribution of individual OH

production and loss pathways simulated in CAM-Chem

 OH is at the steady state.

03 + HO, — OH . [OH] = R(prod) / f(loss).

o
©

* Integrated between -60°
NO + HO, - OH and 60° latitudes.
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Contribution of OH production
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CAM-Chem AquaChem
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AquaChem reproduces the contribution of individual OH

production and loss pathways simulated in CAM-Chem

 OH is at the st tate.
H,0, + hv — 20H OH is at the steady state

03 + HO, — OH . [OH] = R(prod) / f(loss).

o
©
1

* Integrated between -60°
NO + HO, - OH and 60° latitudes.

o
o
1

o
>

O; + hv - 0D + H,0 -» 20H

Contribution of OH production
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CAM-Chem AquaChem
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