

Biogenic Emissions Modulate the Tropospheric Hydroxyl Radical (OH) Response to Climate Warming

Qindan Zhu MIT Houghton Postdoc Fellow

The climate feedback of methane is determined by both natural methane emissions and OH chemistry

How does OH respond to climate warming?

Climate warming

Indirect response: biogenic volatile organic compounds (BVOC) emissions.

□ Direct response: meteorology.

The coupling between climate dynamics and emissions makes interpreting OH challenging

OH (10^6 molec cm⁻³)

Build a step in the model hierarchy to study chemistry-climate interaction

Held, 2005; Zhu et al., 2025, In prep

AquaChem: a simplified chemistry-climate model retaining full complexity in chemistry

• Simplified dynamics

- Hadley Cell
- Upper tropospheric jet

- Simplified emissions
- 103 in total
- No spatial and seasonal variation

- OH is at the steady state.
- [OH] = R(prod) / f(loss).
- Integrated between -60° and 60° latitudes.

Characterize the OH response to warming using idealized +2 Kelvin SST experiments in AquaChem

The meteorology and BVOC emissions impacts OH through OH production and loss pathways, respectively

Direct OH response to idealized warming is dominated by moistening

• OH production rate: 7.6-9.6%.

- OH production rate: 7.6-9.6%.
- Primary production pathway: 6.1-8.1%.
- 7%/K increase in H₂O (Clausius-Clapeyron).

• OH loss frequency: 5.0-12.7%.

- OH loss frequency: 5.0-12.7%.
- OH + BVOC reaction: 4.5% in the tropics.

BVOC oxidation products: oxygenated VOCs and CO

- OH loss frequency: 5.0-12.7%.
- OH + BVOC reaction: 4.5% in the tropics.
- OH + oxygenated VOCs: 2.2% in the tropics.

BVOC oxidation products: oxygenated VOCs and CO

- OH loss frequency: 5.0-12.7%.
- OH + BVOC reaction: 4.5% in the tropics.
- OH + oxygenated VOCs: 2.2% in the tropics.
- OH + CO reaction: 2.5-4.6%.

BVOC oxidation products: oxygenated VOCs and CO

• Moistening: well-constrained.

• BVOC emissions: highly uncertain.

Take-away messages

OH response to idealized warming

Climate warming

- Idealized chemistry-climate model AquaChem.
- Process-level understanding of OH chemistry.
- Moistening vs BVOC emissions.

• Moistening: 6.8% to 8.5%.

• Moistening: 6.8% to 8.5%.

Temperature-sensitive BVOC emissions: -9.1% to -2.0%.

• Moistening: 6.8% to 8.5%.

- Temperature-sensitive BVOC emissions: -9.1% to -2.0%.
- OH response to idealized warming: -1.0% to 4.9%.

