Drivers of biogenic secondary organic aerosol from the past to the present and the future

Yang Shi, Colette L. Heald, Jesse H. Kroll

Massachusetts Institute of Technology

Organic aerosol is a major component of atmospheric fine aerosols, and a major fraction of the total organics are **secondary organics**.

Zhang et al. (2007)

Organic contribution: 18-70%; average = 45%

Secondary organic aerosol (SOA) formation

Vegetation (e.g., trees)

RO₂ fate determines the ultimate amount of SOA.

Community Earth System Model version 2.2 (CESM2.2)

CLM5

CAM6-Chem

(Community Land Model)

(Atmosphere component with full chemistry)

Prognostic BVOC emissions (Isoprene, Monoterpenes, & Sesquiterpenes)

Gas-phase chemistry Aerosol model

Expanded RO₂ chemistry in VBS

2022).	Fast	Slow
+ ISOP-RO ₂	2e-11 (Berndt et al., 2018b)	2e-11 (Berndt et al., 2018b)
+ MTERP-RO ₂	4e-11 (Berndt et al., 2018b)	1e-12 (Zhao et al. 2018)
+ Later generation Terpene RO ₂ s	2.6e-10 (Berndt et al., 2018a)	1e-12 (Zhao et al. 2018)

Unit: cm³ molec⁻¹ s⁻¹

- Photolysis of BSOA in SOAG0 bin is turned off (e.g., O'Brien and Kroll, 2019; Baboomian et al., 2
- Individual reactions are tagged separately.

Experiments

BASE Baseline chemistry

NEW_fast

NEW_slo

Expanded chemistry (Fast and slow $RO_2 + RO_2$ reaction rates are tested)

W

Configuration

 Climate, CO₂ concentrations, and anthropogenic emissions in present-day (PD)

$\ensuremath{\mathsf{MTERP}\text{-}\mathsf{RO}_2}$ fates and contributions to SOA burden in PD

Isomerization is nearly saturated in the MTERP-RO₂ fate, and it contributes to more than 40% of total SOA formed by MTERP-RO₂.

MTERP-RO₂+RO₂ reactions contribute moderately to the RO₂ fate, but minor to SOA burden.

Total BSOA burden is similar, despite of the large differences in chemistry mechanisms

This is due to the similarities in SOA yields in various pathways, highlighting the need to better constrain SOA related parameters in the laboratory. 10

Examine the changes in SOA formation from the past to the future

• These experiments use the same chemistry as **NEW** fast.

$\rm MTERP-RO_2$ fates and contributions to SOA burden from PI to F

- The isomerization of MTERP-RO₂ remains saturated from PI to F, contributes greatly to total SOA.
- The RO₂ + NO pathway contributes more in PD than in PI and F.

SOA burden decreases from PI to PD, but increases from PD to F.

Global MTERP+OH SOA distribution change

Summary

- We expanded the RO₂ chemical mechanism in CAM6-Chem VBS to include the isomerization and RO₂ + RO₂ pathways for MTERP-RO₂.
- The **isomerization** pathway saturates its branch and contributes significantly to MTERP SOA burden in PI, PD, and F.
- The RO₂ + RO₂ pathway contributes moderately to RO₂ fate but minor to SOA burden.
- Large uncertainties exist in the SOA-related parameters. This highlights the need to better constrain them in the lab experiments.

New tracers/reactions

- •41 * 3 (SOAG, soa_a1, soa_s2) = 123 advected tracers
- •41 * 2 (soa_c1, soa_c2) + 4 RO2s = 86 non-advected tracers
- >170 new reactions
- Computational cost increase (only) by $\sim 30\%$

Isoprene emission changes (PI to F)

EMIS ISOP

Monoterpene emission changes (PI to F)

EMIS MTERP

NO emission changes (PI to F)

EMIS NO

OH changes (PI to F)

OH 850 mb

O_3 changes (PI to F)

O3 850 mb

