Towards a machine learning enhanced
version of the Community Earth System
Model (CESM3-MLe)

David Lawrence
CESM Chief Scientist




Earth
observations

Kilometre-scale
climate models

Next-generation Earth System modeling to address urgent

mitigation and adaptation needs

Hybrid (physics + ML) ESMs

T ML downscaling/
£ J?AeA ‘ regional refinement

——

Reduced systematic
errors and more accurate
climate projections

P
AR ) PCIORS
7
v S8k
ATA ANy S
X TAVAVAVAVA Y, 80
o\ VAV‘YAVAVA",;'
ATATAy,
AN s AVAYAYAY,
TAVAY e AVAYAVAVAY, X
VATaY
v Al

<K

Actionable climate science

\'\’4 X w

Impact
models \ﬂ
B

\ v
VATAVAA BN ~
T ATATAYAYATAY =
TAVAY, /%74
AV ’V¢v¢v: .
L
RO
et

Figure from Eyring, Gentine, Camps-Valls, Lawrence, Reichstein (Nature Climate Change, 2024)
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Bridging across scales :—

- Higher resolution with new computing opportunities

« Improved with physics-aware ML

- Constrained and benchmarked with Earth observations
+ Modern and operational science infrastructures

Figure from Eyring, Gentine, Camps-Valls, Lawrence, Reichstein (Nature Climate Change, 2024)




Next-generation Earth System modeling to address urgent

mitigation and adaptation needs

Earth system feedbacks and processes enhanced with machine learning
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Working towards CESM3
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CMIP Timelines
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CMIP7 DECK and Fast Track experiments
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14,000 total years of simulation; CESM3 estimated cost: 14,000 pe-hrs/yr at 12.2myrs/day
196M pe-hrs, 3.2 yrs wall clock




Proposed CESM Timelines
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Proposed CESM Timelines
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Can we accelerate progress towards
more reliable (unbiased) climate
projections through production of
CESM3-MLe?

TR \ & ﬂkn .

SRy

&

W i 4
£rRTR S

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.
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e Urgent need for actionable information (climate
risks, consequences of intervention/mitigation)

e High-resolution (0.25° and ultra high-resolution
(km-scale) modeling configurations

e Machine learning, hybrid modeling, emulators

e Goal of seamless Earth System Prediction Across ‘fr
Timescales (ESPAT), S2S — S2D — 30-yr ;
projections

e Changing computing architectures — code
modernization?

¢ e Calls for improved accessibility of ESMs and
v output (e.g., to global south)
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Establish systematic ML-based
Generate a perturbed parameter methodologies for calibration of Earth
ensemble

System Model parameters

Train machine

il learning emulator
Confront model with
observational data H s H Hﬂ

: S S & & 5
Constrain <0 Q&f%o& K @w & & Q& & & <
osterior et TS TS § s*" L&
i i p TR T TP ©
Iterative refocusing parameter S TS °+\5‘& &
Q

\/ space

# PARAMETERS

Large CAM and CLM perturbed

Methods developed by Linnia Hawkins, Daniel parameter ensembles are available

Kennedy, and Katie Dagon
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Generate a perturbed parameter Default
ensemble MAE =1.36

Train machine
learning emulator

Confront model with
observational data
Calibrated
@ Constrain MAE = 0.60
posterior
Iterative refocusing parameter
space

\/

Applying methods now to calibrate
CLM®6 for CESM3
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Constraining land carbon cycle projections

500 land-only simulations

with latin hypercube generated Range *600PgC is as
parameter sets (25 parameters) large as across CMIP6

CLM-PPE SSP 3-7.0 models
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Constraining land carbon cycle projections

500 land-only simulations
with Latin Hypercube generated
parameter sets (25 parameters)

Many parameter sets will be consistent with our set of observational constraints
Plan is to select one as default, but

CLM-PPE SSP 3-7.0

w/ recent historical sink constraint

1850

# ensemble members



Cumulative Land Sink (PgC)

500 land-only simulations
with Latin Hypercube generated
parameter sets (32 parameters)

CLM-PPE SSP 3-7.0

w/ recent historical sink constraint

Source

1850

Constraining land carbon cycle projections

Still a diversity of carbon
trend responses, even in
constrained sets

For CLM6, plan is to select
one as default, but release
many (~50-1007?) with the
CESMa3 release

Can we build an
emissions-driven CESM3
Large Ensemble by
including multiple land
carbon parameter sets to
span this uncertainty (in
addition to Initial Condition
uncertainty)?
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Workflow for GISS ModelE3 version and onward...
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The bias for the calibrated ensemble members becomes much smaller. Example shown above: for shallow cumulus cloud

fraction, where new physics and hand tuning never gave a good answer (previously a -20 to 30% bias in tropics, now -5%
in tropics).
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Heat Maps of impact in a PPE vs auto-calibrated ensemble /{ /f@

Parameter sensitivities (doutput / dparameter) can change as model approaches Ry
reality (i.e., less biased mean state) O G s i
More parameters matter as you approach the answer!
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Parameterization

Description

Likelihood for
CESM3-MLe

Warm rain microphysics

TAU bin microphysics neural net emulator

High

Vegetation phenology

Leaf onset and offset equations for Plant Functional Types;
equation discovery from satellite LAI and climate indices

Medium-High

Microphysics (Ice)

Ice parameter retrieved with ML based on chamber growth
experiments

Medium-High

Microphysics (BOSS)

Multi-structure microphysics parameterization for warm
processes

Medium

Air-sea flux

Neural Net based probabilistic model of mean and variance
based on in-situ observations

Medium

Superparameterization (V1,
convection + radiation +
1-moment microphys)

Embedded cloud resolving models with full land surface and
condensate coupling, i.e. ClimSim.

Caveat: V1 excludes two-moment microphysics needed for
aerosol-cloud interaction.

MZ2LInES
Schmidt Futures

Rough estimation of
readiness level of
LEAP ML
parameterizations




Towards a machine learning enhanced version of CESM (CESM3-MLe)

(TAU code)
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Learning the Earth with Artificial
intelligence and Physics
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Emulate cloud droplet autoconversion and accretion with NNs trained on CAM
simulations with warm rain process replaced with highly resolved bin microphysics

(b) TAU Bin Rain Rate
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effective radius (um)

010 033 110 384 1207 40,00
rain rate (mm/d)
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(C) TAU ML Rain Rate
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Gettelman et al., (2021)



Towards a machine learning enhanced version of CESM (CESM3-MLe)
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AFLIquIc WaterPath (LWE) Technical progress / issues
— Revisedd TAU

BSE el « Neural nets are written in Fortran

s * Read a file with the weights+biases from
training the NN in Python

Restricted to the current architecture (feed
forward, fully connected neural network)

A python-fortran bridge would be
preferable, because it offloads the
hardcoded fortran to a more flexible Python
environment

~
w
1

v
£
=
o
3
(]
=
o
}_.

w
o
1

N
wm
1

Latitude

Gettelman et al., (2021)
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R —— Warm rain tau bin microphysics emulation
online in CAM

— Revisedd TAU
—— Qriginal microphysics kk2000

-~ Emulated TAU 1 NN 12 month e Improved precipitation frequency
Emulated TAU 3 NN 12 month . . .
distribution

Improved agreement with cloud fraction obs
in many regions (though not all)

Cloud fraction and SWCF, for example, are
quite different to the control model —
climate is quite different in CAM (and
presumably CESM, not tested)

How will this affect aspects of CAM
Latitude simulations?
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Gettelman et al., (2021)




Developing workflow when new ML-guided physics goes into CAM or CLM

(example with ML warm rain micophys)

Large Scale Precipitiation Intensit

~—— Control
~—— TAU

1. New ML microphysics, —
improvement in rainfall
distribution (orange, green

10734

lines)! g
3. Using ML for auto-tuning, can we
re-calibrate CAM to correct the degraded
performance, while simultaneously retaining
I e e T the improvement in rainfall distribution?
Precip [mm/day]
ML-Emu1ated
2. Degraded performance can occur for some previously-good -l Nl
climatologies when CAM with warm rain ML is adopted. ]

CAM default - observation

CII:-imate
. . . ror Ao
CAM with warm rain ML- observation Larger | .

S 3

e

Slide from Qingyuan Yang and Greg Elsaesser



Integrating and evaluating in the Community Atmosphere Model

= Emulated TAU 3 NN 12 month CLD lev FREQR
— = Emulated TAU 3 NN 1 month nrtend0

Warm rain microphysics emulation online in — Emulated TAU 1 NN 12 month optimized
CAM Revised4 TAU
EBAF4.1
e Improved precipitation frequency distribution C) Cloud Fraction

e Improved agreement with cloud fraction obs 09
in many regions (though not all)

e Cloud fraction distribution is very different to
the control model — climate is quite different
in CAM (and CESM, not tested)

e How will this affect aspects of CAM 0.5-
simulations? -

e <
S ©
1 1

CLDTOT (Fraction)
o
o
1

1 1 1
=75 -50 =25 0 25 50 15
Latitude

Work by Wayne Chuang and DJ Gagne (LEAP)
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Robust, flexible, and sustainable
implementation of ML-based parameterizations
requires Fortran-Python bridge

FTorch e FTorch implementation with CESM working
fairly well (thanks to Will Chapman and Jim
Edwards)

e Needs an integration plan to bring fully into
CESM3 infrastructure

Documentation

Testing, edge case evaluation

GPU-CPU combo testing

|deally, some consistency in use across US
modeling centers

ML-parameterization
PyTorch




So, how do we get to our goal of a CESM3-MLe?

COMMUNITY EARTH
SYSTEM MODEL

e AR )

Collective effort, engagement, and focus (LEAP, M2LINeS, CESM core team
e More dedicated resources now in place

o Integration Team: Linnia Hawkins, Addisu Semie, Qingyuan Yang (LEAP); Will
Chapman, Xavier Levine (M2LINeS); Juliene Savre-Piou (ICON-ML)

o When CESM3 is complete, more resources/effort from CESM core team
e Integration Team is starting to meet regularly

o Afirst task is a survey of candidate parameterizations to fully characterize
applicability to CESM, readiness level, needs going forward, timeline, etc

o ML Integration github (github.com/leap-stc/Integration_team)



http://github.com/leap-stc/Integration_team

Status Update — Parametrizations at GFDL & NCAR

Lateral momentum
meso

Lateral buoyancy meso

buoyancy + mom
combined

Sub-meso

Vertical Mixing

Moist convection

Atm Boundary Layer

Sea-ice heterogeneity

Data/ML tool Implementation Idealized config Global Config Misc
CNN SiTEr i ey V| V| Global model - Dev only 1
year
OMS5 + OM4- same as eqn
ANN Fortran 4 4 disco for the NA and no
changes for the SO
OM4: reduce biased in
Equation Discovery Fortran J (NEMO + MOMB®6) _l North Atlantic but not
Southern Ocean
ANN Fortran V| July 2025 OM4
ANN Fortran V| No immediate
plans
CNN No plans To be tested in NEMO
Tested in GFDL SPEAR
. . coupled O+A+l
ANN +Eqn Disco Fortran 4 To be tested within KPP
CESM (TBD)
_ OM5/CM5
ANN TBD Planned (pending
new hire)
In progress CAM
ANN Fortran In progress SCAM+ July 2025 (TBC)
aquaplanet
Idealized Online setup to be
CNN + ANN Fortran+ Ftorch Planned start Dec 2024 tested with CAM
Obs-based Fortran — CESM




Summary: Towards a CESM3-MLe

Push forward (now) so we can test the hypothesis that ML can
help build better and more accurate ESMs for adaptation and

mitigation needs - syi@‘;? ik
o Sustained team interactions (e.g., PI, ML-param developer, e 2.
experienced CESM developer, and SE)
o  More coordination / communication (github CESM-MLe project
management)
o More software engineers needed
Set a low bar
Anticipate that there will be challenges CESM3-MLe success could be defined as
o ML sErErtE ae olse S e el e low as 3 to 5 ML-based parameterizations
P 9 (1-2 atm, 1-2 ocn, 1 Ind, 1 sea ice) along
o  Model instabilities with ML parameter calibration (Ind, atm)
o Unanticipated interdependencies
o Substantially new simulated climate that may degrade
orthogonal aspects of simulation
o New tuning challenge with some tuning knobs removed?
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