A Roadmap for ML-assisted Ice Microphysics Parameterizations in PUMAS

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

2025 CESM Winter Working Group Meeting

Tuesday, Feb 4, 2025

Joseph Ko¹, Jerry Harrington², Kamal Chandrakar³, Jasmine Remillard⁴, Marcus van Lier-Walqui^{4, 1}, Kara Sulia⁵, Vanessa Przybylo⁵, Trude Eidhammer³, Hugh Morrison³, Kara Lamb¹

> ¹Columbia University, ²Penn State University, ³NCAR, ⁴NASA GISS, ⁵University at Albany

1. Motivation

2. Lab + NODE

3. In situ + ML

4. LES + Bayesian + ROM

1. Motivation

2. Lab + NODE

3. In situ + ML

4. LES + Bayesian + ROM

1. Motivation

2. Lab + NODE

3. In situ + ML

4. LES + Bayesian + ROM

1. Motivation

2. Lab + NODE

3. In situ + ML

4. LES + Bayesian + ROM

1. Motivation

2. Lab + NODE

3. In situ + ML

4. LES + Bayesian + ROM

Clouds strongly impact the climate

Source: UCAR

Clouds impact Earth's energy balance and hydrologic cycle

Ice clouds are poorly understood

^{1. Motivation} Cloud Microphysics: small-scale processes that describe the formation, evolution, and interaction of droplets/crystals

Credit: Morrison et al. 2020

2. Lab + NODE

Learning ice growth rates with lab measurements and neural ODE's (Kara Lamb, Jerry Harrington)

Can we use lab measurements to improve representation of vapor depositional growth?

Single crystal ice mass growth rate (Pruppacher & Klett, 1997)

$$\frac{dm_p}{dt} = \frac{4\pi C(S_{ice} - 1)}{\frac{RT_g}{\hat{e}_{ice}(T_g)D_w^*M_w} + LH}$$
$$D_w^* = \frac{D_w}{\frac{r}{(r+\Delta_v)} + \frac{D_w}{r\alpha_D} \left(\frac{w\pi M_w}{RT_a}\right)^{1/2}}$$

The functional dependence of α_D is uncertain (typically assumed to be a constant value)

Mass growth time series from levitation diffusion chamber experiments (Harrison et al. 2016; Pokrifka et al. 2020, 2023)

N = 290 experiments

Lamb & Harrington, 2024

2. Lab + NODE

Neural ODE (NODE) to learn growth rate

2. Lab + NODE

Functional form learned with symbolic regression (PySR)

$$G = \frac{G_c}{a + b(G_c + cm)^{-1}}$$

$$a = 0.6517688, b = 2.98707 \times 10^{-9}, c = 1000$$

Can be directly implemented into growth parameterization

3. In situ + ML

3. In Situ + ML

Constraining ice properties with in situ imagery and ML

Ice habit (i.e., shape) matters

• Habit = Shape

- Habit ~ function of *temperature* and *supersaturation* (i.e., humidity)
- Habit influences:
 - microphysical process rates
 - fall speeds
 - optical properties
- E.g. Ice complexity may induce additional cooling effect of -1.1 W m⁻² (Jarvinen et al. 2018)
 - For reference: CO₂ forcing is ~2 W m⁻²

Source: Kenneth Libbrecht, snowcrystals.com

In situ measurements are crucial to understanding habit in real clouds

Source: Przybylo et al. (2022)

CPI Electro-Optics

Mass-Size (m-D) relationships are important for ice microphysics

Mass? Surface Area? Etc.

CPI image of bullet rosette

No ground truth \rightarrow Use synthetic data

A priori geometric model of bullet rosette

Synthetic 3-D models

Source: Pokrifka et al., 2023

Predicting 3-D properties from 2-D imagery

3. In situ + ML

Random forest results: surface area and mass

CNN's can be used to circumvent feature engineering

Credit: Arden Dertat

End goal: Revisit m-D relationships using millions of CPI images

CPI images

4. LES + Bayesian + ROM

4. LES + Bayesian + ROM

Using high-fidelity models to reduce parametric and structural uncertainties.

Bulk LES

Bulk

Lagrangian (SDM) LES

Structural uncertainty dominate over parametric uncertainty

Mass-weighted fall speed

Number mixing ratio

Mass-weighted particle density

End goal: reduce parametric + structural uncertainty and move towards implementation in CAM

1. Optimize parameters within existing (inadequate) structure:

 Approximate Bayesian Computation for estimating posteriors without likelihoods

2. Improve the structure:

 Reduced order modeling with encoders and decoders (e.g., Lamb et al. 2024)

JAMES Journal of Advances in Modeling Earth Systems*

Research Article 👌 Open Access 💿 🛈

Reduced-Order Modeling for Linearized Representations of Microphysical Process Rates

K. D. Lamb 🔀 M. van Lier-Walqui, S. Santos, H. Morrison

First published: 28 June 2024 | https://doi.org/10.1029/2023MS003918

Timeline of progress & CAM integration

 NODE's applied to single-particle lab measurements to develop physics-informed ML models for vapor depositional growth

- NODE's applied to single-particle lab measurements to develop physics-informed ML models for vapor depositional growth
- Framework for predicting 3-D properties from *in* situ imagery was developed → goal to improve m-D relationships

- NODE's applied to single-particle lab measurements to develop physics-informed ML models for vapor depositional growth
- Framework for predicting 3-D properties from *in* situ imagery was developed → goal to improve m-D relationships
- 3. LES + Bayesian methods → optimal parameters in existing schemes. LES + ROM → Improved structure?

Thanks!

Collaborators & Help:

- Kara Lamb (Columbia)
- Marcus van Lier-Walqui (Columbia, NASA GISS)

LE^P

- Jerry Harrington (Penn State)
- Gwenore Pokrifka (Penn State)
- Kamal Chandrakar (NCAR)
- Jasmine Remillard (NASA GISS)
- Hugh Morrison (NCAR)
- Kaitlyn Loftus (Columbia)
- Nathan Magee (TCNJ)
- And more...

Contact: jk4730@columbia.edu

Contact: jk4730@columbia.edu

- NODE's applied to single-particle lab measurements to develop physics-informed ML models for vapor depositional growth
- Framework for predicting 3-D properties from *in* situ imagery was developed → goal to improve m-D relationships
- 3. LES + Bayesian methods → optimal parameters in existing schemes. LES + ROM → Improved structure?