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1. Motivation
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Clouds strongly impact the climate

Source: UCAR

Clouds impact Earth’s energy balance and hydrologic cycle

https://scied.ucar.edu/learning-zone/clouds/cloud-types


Ice clouds are poorly understood
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“The role of thin cirrus clouds for cloud feedback is 
not known and remains a source of possible 

systematic bias…the representation of cirrus in 
GCMs appears to be poor and such clouds are 
microphysically complex.” (IPCC AR5, Ch. 7)

Source: Fir0002/Flagstaffotos

1. Motivation

https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter07_FINAL-1.pdf
https://en.wikipedia.org/wiki/File:Cirrus_sky_panorama.jpg


8

1. Motivation

Credit: Axel Seifert

Credit: Morrison et al. 2020

Cloud Microphysics: small-scale processes that describe 
the formation, evolution, and interaction of droplets/crystals 



2. Lab + NODE

Learning ice growth rates with lab 
measurements and neural ODE’s

(Kara Lamb, Jerry Harrington)

2. Lab + NODE
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Can we use lab measurements to improve 
representation of vapor depositional growth?

2. Lab + NODE
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Single crystal ice mass growth rate 
(Pruppacher & Klett, 1997)

The functional dependence of 𝛂D is uncertain 

(typically assumed to be a constant value)

Lamb & Harrington, 2024

Credit: Harrington & Pokrifka



Mass growth time series from levitation diffusion 
chamber experiments 

(Harrison et al. 2016; Pokrifka et al. 2020, 2023)

2. Lab + NODE

11Lamb & Harrington, 2024

N = 290 experiments



Neural ODE (NODE) to learn growth rate

2. Lab + NODE

12

a) Ice growth rate from theory

b) NODE model to predict mass ratio

Strong constraint Weak constraint

c) Minimize distance between obs. & model by optimizing 
neural network (NN) weights using stochastic gradient descent

d) Symbolic regression on trained NN

Figure adapted from Chen et al. 2018
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2. Lab + NODE
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Weakly constrained 

NODE model 

performed best:

- Lowest error (MSE)

- Best fit for 154 of 

290 experiments

a) Ice growth rate from theory

b) NODE model to predict mass ratio

Strong constraint Weak constraint

c) Minimize distance between obs. & model by optimizing 
neural network (NN) weights using stochastic gradient descent

d) Symbolic regression on trained NN

Figure adapted from Chen et al. 2018

Gc

÷

b

Gc

+

m

x

c

x

inv

+

a



Functional form learned with 
symbolic regression (PySR)

2. Lab + NODE
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Can be directly implemented into 
growth parameterization

(i.e., don’t need Python to 
Fortran bridge!)



3. In Situ + ML

Constraining ice properties with in 
situ imagery and ML

3. In situ + ML 
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Ice habit (i.e., shape) matters

3. In situ + ML 
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Source: Kenneth Libbrecht, snowcrystals.com

● Habit = Shape

● Habit ~ function of temperature and 
supersaturation (i.e., humidity)

● Habit influences:

○ microphysical process rates

○ fall speeds

○ optical properties

● E.g. Ice complexity may induce additional 
cooling effect of -1.1 W m-2 (Jarvinen et al. 
2018)

● For reference: CO2 forcing is ~2 W m-2

http://www.snowcrystals.com/photos/photos.html


In situ measurements are crucial to 
understanding habit in real clouds

3. In situ + ML
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Source: Przybylo et al. (2022)

Source: Xiao et al. 2019

https://journals.ametsoc.org/view/journals/atot/39/4/JTECH-D-21-0094.1.xml
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019EA000636


Mass-Size (m-D) relationships are 
important for ice microphysics

3. In situ + ML
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Mass?
Surface Area?

Etc.
MLD

CPI image of 

bullet rosette



No ground truth → Use synthetic data

3. In situ + ML
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Source: Pokrifka et al., 2023

A priori geometric model of 
bullet rosette Synthetic 3-D models

Computationally generate 
random variations

https://doi.org/10.1175/JAS-D-22-0077.1


Predicting 3-D properties from 2-D imagery

3. In situ + ML
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Random forest results: 
surface area and mass

3. In situ + ML
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CNN’s can be used to circumvent 
feature engineering

4. LES + Bayesian + ROM
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Credit: Arden Dertat

R2 = 0.88 R2 = 0.93

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2


End goal: Revisit m-D relationships 
using millions of CPI images

3. In situ + ML
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m-DMLD

CPI images

Compare to 
existing m-D 

lookup tables. 

Update as 

necessary.



4. LES + Bayesian + ROM
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4. LES + Bayesian + ROM

Using high-fidelity models to reduce 
parametric and structural uncertainties.



Bulk LES

4. LES + Bayesian + ROM
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Lagrangian (SDM) LES



4. LES + Bayesian + ROM
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Structural vs. Parametric

Microphysics framework

Different process 
parameterizations

𝑦 = 𝜃1𝑥 + 𝜃2

𝑦 = 𝜙1𝑥
2 + 𝜙2𝑥 + 𝜙3

e.g., 

Generally, referring to 
coefficients in equations

𝑦 = 𝜃1𝑥 + 𝜃2

𝑦 = 𝜙1𝑥
2 +𝜙2𝑥 + 𝜙3

e.g., 



Structural uncertainty dominate over 
parametric uncertainty 

4. LES + Bayesian + ROM
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Mass mixing ratio

Mass-weighted fall speed

Number mixing ratio

Mass-weighted particle density



End goal: reduce parametric + structural uncertainty 
and move towards implementation in CAM

4. LES + Bayesian + ROM
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1. Optimize parameters within existing 

(inadequate) structure:
• Approximate Bayesian Computation 

for estimating posteriors without 

likelihoods

2. Improve the structure:

• Reduced order modeling with 
encoders and decoders (e.g., Lamb et 

al. 2024)

Large ensembles of ice cloud LES



Timeline of progress & CAM integration

5. Future steps + timeline
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Now: Feb 2025

April 2025

- Implement NODE 
model in CAM

- Run sensitivity 

tests

Lab + NODE

April 2025

- Run LES sims.

Summer 2025

- Fine-tune models 
for CPI images

- Develop new m-D 

relationships

LES + Bayesian + ROM

In situ + ML

Summer 2025

- Develop ROM’s
- Optimal bulk parameters 

+ uncertainties (from 

PPE’s)

LES + Bayesian + ROM

Fall/Winter 2025

- Test new m-D 
lookup tables and 

stochastic m-D 

parameterizations

In situ + ML

Fall/Winter 2025

- Test learned parameters 
and ROM’s in single-

column CAM

LES + Bayesian + ROM



Conclusion
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1. NODE’s applied to single-particle lab 
measurements to develop physics-informed ML 
models for vapor depositional growth
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measurements to develop physics-informed ML 
models for vapor depositional growth

2. Framework for predicting 3-D properties from in 
situ imagery was developed → goal to improve 
m-D relationships
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1. NODE’s applied to single-particle lab 
measurements to develop physics-informed ML 
models for vapor depositional growth

2. Framework for predicting 3-D properties from in 
situ imagery was developed → goal to improve 
m-D relationships

3. LES + Bayesian methods → optimal parameters 
in existing schemes. LES + ROM → Improved 
structure?



Thanks!
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Collaborators & Help:
• Kara Lamb (Columbia)

• Marcus van Lier-Walqui (Columbia, NASA GISS) 
• Jerry Harrington (Penn State)
• Gwenore Pokrifka (Penn State)
• Kamal Chandrakar (NCAR)
• Jasmine Remillard (NASA GISS)

• Hugh Morrison (NCAR)
• Kaitlyn Loftus (Columbia)
• Nathan Magee (TCNJ)
• And more…

Contact: jk4730@columbia.edu



Conclusion
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1. NODE’s applied to single-particle lab 
measurements to develop physics-informed ML 
models for vapor depositional growth

2. Framework for predicting 3-D properties from in 
situ imagery was developed → goal to improve 
m-D relationships

3. LES + Bayesian methods → optimal parameters 
in existing schemes. LES + ROM → Improved 
structure?

Contact: jk4730@columbia.edu
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