Seasonal predictability of saturation vapor pressure deficit in the western United States

Melissa L. Breeden¹, Andrew Hoell¹, Rochelle Worsnop¹, John Albers¹, Mike Hobbins^{1,2}, Rachel Robinson^{1,2}, Daniel Vimont³ ¹NOAA Physical Sciences Laboratory, Boulder, CO

²CIRES CU Boulder, Boulder, CO ³Dept. Of Atmospheric and Oceanic Sciences, UW-Madison, Madison, WI

ERA5 VPD Anomaly, JAS 2020

Saturation vapor pressure deficit (VPD) is highly correlated to area burned by wildfires in western US

Zhuang et al. PNAS 2018

Research Questions

1. What are sources of seasonal VPD skill in the western US?

2. How do VPD skill, and sources of skill, differ by season and western US subregion?

Geographic Area Coordination Center Regions

https://gacc.nifc.gov/

Data and Forecast Model

- Monthly mean JRA55 Reanalysis sea surface temperature (SST), soil moisture (SM) and VPD anomalies calculated with respect to the 1958-2021 monthly climatology
- Two Linear Inverse Models (LIMs; Penland and Sardeshmukh 1995) are trained to forecast VPD using covariance statistics of VPD and predictor variables SST, SM
 - LIMs are used to generate retrospective forecasts and assess VPD skill contributions from modes of variability (such as a long-term trend, ENSO)

	6
Variable	Domain
SST	55°S – 55°N, 0-358.75°E
SM	24°N-50°N, 230-300°E
VPD	25°N-50°N, 230-300°E

LIM Including the Trend LIM without the Trend

Variable	Domain
SST	25°S – 55°N, 0-358.75°E
VPD	25°N-50°N, 230-300°E

Seasonal VPD Forecast Skill: Trend Included

Removing a nonlinear trend

How much VPD skill is associated with the trend?

- Isolate component of the initial conditions associated with just the trend
- Compute new forecasts and evaluate skill

Trend dominates VPD skill at longer lead times

Detrended VPD Skill

a) Western US b) Southwest 18 18 16 16 (months) (months) Lead Time (Lead Time (. D | F M A M | | A S O N Verification Month d) NorCal 18 18

16

(months) 15

Lead Time (

0.1

0.3

0.5

0.7

0.9

c) SoCal

18

16

LIM without the Trend

Variable	Domain
SST	25°S – 55°N, 0-358.75°E
VPD	25°N-50°N, 230-300°E

Decomposing Detrended LIM Skill

• We use the LIM to split VPD anomalies into a group associated with SSTs, 'SST-VPD', and a group with *only* VPD anomalies, 'VPD-only'

VPD skill from SST-VPD and VPD-only modes differs in timing and amplitude

Seasonal Forecasts of Opportunity (SFOs)

- Sort forecasts based on their signal-to-noise ratio and resultant *expected skill* (Sardeshmukh et al. 2000; Albers and Newman 2019, 2021)
- SFOs defined as forecasts with the top 15% of expected skill values

Patterns associated with forecasts of opportunity include ENSO

• Optimal patterns (OPs) maximize system growth over a specified growth period

Patterns associated with forecasts of opportunity include ENSO

• OP1 and OP2 associated with 3-month SFOs, only OP1 with 6-month SFOs

Conclusions and More Information

- Seasonal VPD skill is associated with a nonlinear warming trend and SST variability, which contribute to skill mainly during the warm and cool seasons, respectively.
- Breeden, M. L., Hoell, A., Worsnop, R. P., Albers, J. R., Hobbins, M. T., Robinson, R. M., and Vimont, D. J.: Seasonal Predictability of Vapor Pressure Deficit in the western United States, submitted to *Weather and Climate Dynamics* preprint:

https://egusphere.copernicus.org/preprints/2025/egusphere-202 5-115/

- Realtime VPD forecasts!
- Contact Info: Melissa Breeden, NOAA PSL melissa.breeden@noaa.gov
- This work was funded by NOAA grant: NA230AR40501861

Experimental Seasonal Vapor Pressure Deficit Guidance

https://www.psl.noaa.gov/forecasts/seasonal_vpd/

Linear Inverse Model (LIM) For state vector **x** = {VPD, SM, SST}, All from JRA55 reanalysis

$$\frac{dX}{dt} = LX + F_{S}$$

Evolution Slow, predictable Fast, rapidly decorrelating, unpredictable

Dynamic Operator: $\mathbf{L} = log(\mathbb{C}\tau * inv(\mathbb{C}_0))/\tau$

LIM Forecast: x(t) = x(0) * exp(Lt) = x(0)G(t)

Penland and Sardeshmukh 1995