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Motivation

Improving long range (12-24 months) ENSO prediction using advance AI/ML methodologies 

Why – (1) Computational Efficiency, and (2) Range of applications – Agriculture, Water 
Resources, and Food Security 
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Literature Review

• CNNs for ENSO Forecasting: Studies by Ham et al., Kim et al., and Luo et al. demonstrated that 
Convolutional Neural Networks (CNNs) significantly improved ENSO prediction accuracy and 
extended lead times up to 24 months compared to traditional models.

• LSTM Models' Performance: Research by Kratzert et al. and Frame et al. showed that Long 
Short-Term Memory (LSTM) models achieved a 30% improvement in ENSO prediction accuracy 
over traditional methods while providing reliable forecasts up to 24 months.

• ANNs for Climate Signal Extraction: Barnes et al. utilized Artificial Neural Networks (ANNs) to 
enhance climate change signal detection, achieving a 10–15% improvement over traditional 
statistical approaches.
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Research 
Objectives
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Novel 
Contribution

Tackles the "data-hungry" challenge in deep learning models 
using a large ensemble dataset (251 members × 100 years, 
CESM2-LE).

Addresses biases between climate model predictions and 
observations through Transfer Learning.

Specific 
Objectives

Model Development: Develop and evaluate deep learning 
models for long-term ENSO event predictions.

Architecture Comparison: Compare the performance of CNNs, 
LSTMs, GRUs, Bi-directional LSTMs, and hybrid models.

Lookback Analysis: Analyze the impact of different lookback 
periods on model accuracy and lead times.

Transfer Learning: Implement transfer learning to enhance 
model generalizability and performance.



Data and 
Methods
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SST anomaly in the equatorial Pacific

Current status (La Niña ), NOAA 
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Aspect CESM2-LE Berkeley Earth

Model/Data Source
Community Earth System Model 
version 2 Large Ensemble (Rodger et 
al., 2021)

Meteorological stations, satellites, 
buoys, and ships

Duration
251 years (1850–2100) with 100 
ensemble members

From 1950 to the present

Purpose
To understand long-term climate 
variability and change using CESM2-LE

To analyze recent climatic trends, 
validate climate models, and 
understand the impacts of climate 
change

Data Type Modeled data Observational data

Key Applications
Climate variability analysis, scenario 
projections

Model validation, trend analysis, and 
impact assessments



Data Preparation

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10
48.5 11.3 5.3 4.4 3.7 2.5 2.4 1.9 1.5 1.2

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10
44.3 8.1 7.1 2.9 2.8 2.5 2.2 1.6 1.5 1.4

CESM2-LE Berkeley Earth 
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1. A 12-month running mean and detrended anomalies (grand ensemble mean removed) were analyzed.

2. Principal Component Analysis (PCA) was performed, retaining the first 10 principal components (PCs).

Total variance explained: 74.4% Total variance explained: 82.7%



Deep Learning Architectures
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CNN1D Model:
Core Idea: Very effective at capturing local patterns and short-term 
dependencies through its convolutional filters.

Key Layers: Conv1D → Dropout → Flatten → Dense layers.

Standard LSTM Model:
Core Idea: They are designed to capture long-term dependencies in 
sequential data..

Key Layers: LSTM (with return_sequences) → Dropout → LSTM → Dense.

GRU Model:
Core Idea: Similar to LSTM but with a simpler gating mechanism. These are 
designed to capture long-term dependencies in sequential data.

Key Layers: GRU (return_sequences) → Dropout → GRU → Dense.

BiLSTM Model:
Core Idea: Processes the sequence in both forward and backward directions. 
which can be valuable if context from both past and future

Key Layers: Bidirectional LSTM layers with dropout followed by Dense.

Hybrid Model (Conv1D + LSTM):
Core Idea: Leverage both local feature extraction and long-term sequential 
dependencies potentially capturing a richer representation of the data

Key Layers: Conv1D → Dropout → LSTM → Dense.



• Input Data: Processes sequences of SST 
data with lookback periods.

• Model Type: GRU-based recurrent 
architecture for capturing temporal 
dependencies.

• Output: Predicts SST anomalies for 
multiple lead times ahead.

• Training: Uses the Adam optimizer and 
MSE loss function, with early stopping to 
prevent overfitting.
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Development of Deep Learning Models 
(GRU Architecture)



Results
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Feature Analysis

12-month Lead Anomaly correlation vs Number of features. 

Berkeley Earth CESM2-LE
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Model Selection Results –CESM 2 LE
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>0.5

DL model performances on CESM2-LE data

Test performance on 20% withheld data (CESM2-LE)
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Effects of Lookback 



GRU model 
Trained on 

CESM2, 
Applied on 

Berkeley Earth
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DL model performances trained using CESM2-LE data, and verified using Berkely Earth (1950-2017)

ACC = 0.6  @ 12 months lead (comparable or better than SMYLE)



Transfer learning 
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Fine-Tuning a Pre-Trained 
Model :
•Load pre-trained weights and 

architecture.
•Remove the final Dense layer.
•Retain existing GRU layers for 

feature extraction.

01
Re-Train the Model:
•Add a new Dense layer for 

prediction.
Train with early stopping to 
prevent overfitting.

•Use 1950 to 2017 to train and 
test

02
Evaluation
Use the Anomaly 
Correlation Metric (ACM) to 
assess performance.

03
Ungauged Dataset 

Apply the fine-tuned model 
to a separate test dataset.
Measure ACM values for 
different lead months.

2017 to 2024 to predict

04
Save and visualize ACM 
results.
Store the fine-tuned model 
for future use.
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Transfer 
Learning
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DL model performances trained using CESM2-LE data, and verified using Berkely Earth (2004 to 2017)



Research Finidings 

• How does the length of the lookback period affect the performance and accuracy of DL models in ENSO 
prediction?

– Highest predictive performance is achieved with lookback periods of 1-6 months.
• How does the number of principal components affect the performance of DL models in ENSO prediction?

– Increasing the number of principal components generally improved the performance of DL models by capturing more 
data variance. This was evident in the study as the Anomaly Correlation Metric (ACM) increased with the inclusion of 
more principal components.

• Which model configuration is most effective for long-term ENSO predictions?
– The study found that GRU was the most effective configurations for accurate long-term ENSO predictions. These  

models leveraged their strengths in extracting spatial and temporal features.
• Investigating the use of transfer learning to enhance model performance on low- availability datasets in ENSO 

forecasting, and determining which model is most effective 
– Transfer learning significantly enhanced model performance on low-availability datasets. The GRU model, which 

integrates diverse architectures, was the most effective due to its ability to leverage knowledge from larger, 
high-quality datasets.
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Future work

•Further enhance deep learning models and transfer learning techniques.

•Investigate the use of advanced methods such as transformer models.

•Broaden the range of input features by incorporating additional climate variables, 
such as ocean heat content (OHC).

•Extend the application to other climate factors. 
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