

Earth System Prediction Working Group Update

Steve Yeager (NSF NCAR) & Kathy Pegion (U. Oklahoma), WG Co-chairs Sasha Glanville (NSF NCAR), WG liaison Nan Rosenbloom (NSF NCAR)

February 4, 2025

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

ESPWG:

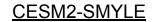
The goal of the ESPWG is to **advance fundamental understanding of Earth system predictability** on time scales ranging from **subseasonal to decadal**. Towards that end, this working group will bring together a **multidisciplinary** group of researchers interested in **how initial conditions influence the near-term evolution of the Earth system**. A key focus will be the **generation and analysis of initialized ensemble simulations** that shed light on the predictability of different components of the Earth system.

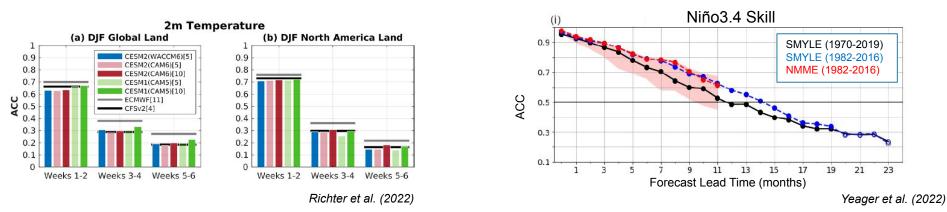
- Web page: <u>https://www.cesm.ucar.edu/working-groups/earth-system</u>
- See web page for mailing list link
- As a "model user" WG, ESPWG is a synthesis activity that would not be possible without the domain expertise contributed from each of CESM's foundational component model WG/development efforts

- https://www.cesm.ucar.edu/working-groups/earth-system
- In-progress: migration of production datasets to CISL RDA (data DOIs)

CESM1:

- CESM1 Subseasonal-to-Seasonal (S2S) reforecasts
 - Ref: Richter et al., 2020 (doi:10.1175/WAF-D-20-0029.1), Data in IRI SubX library
- CESM1 Seasonal reforecasts
 - 10-member, 12-month ensembles initialized monthly (1st of month 1980-2010)
 - NMME (https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/.NCAR-CESM1/)
- CESM1.1 Decadal Prediction Large Ensemble (DPLE) reforecasts
 - 40-member, 122-month ensembles initialized annually (Nov. 1st 1954-2017)
 - Ref: Yeager et al., 2018 (doi:<u>10.1175/BAMS-D-17-0098.1</u>)

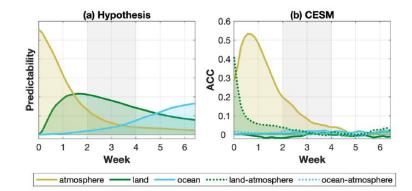

- https://www.cesm.ucar.edu/working-groups/earth-system
- In-progress: migration of production datasets to CISL RDA (data DOIs)


CESM2:

- CESM2 S2S reforecast sets (CAM6 & WACCM6)
 - CAM: 11-member, 45-day ensembles initialized weekly (1999-2020)
 - WACCM: 5-member, 45-day ensembles initialized weekly (Sep Mar, 1999-2020)
 - Ref: Richter et al., 2022 (doi:<u>10.1175/WAF-D-21-0163.1</u>)
- CESM2 Seasonal-to-MultiYear Large Ensemble (SMYLE) reforecasts
 - 20-member, 24-month hindcasts initialized quarterly (Feb, May, Aug, Nov 1970-2023)
 - Ref: Yeager et al., 2022 (doi:<u>10.5194/gmd-2022-60</u>)
- CESM2 Decadal Prediction (CESM2-DP) reforecasts
 - 20-member, 122-month hindcasts initialized Nov. 1 1958-2023)
 - Ref: Yeager et al., 2022 (doi:<u>10.5194/gmd-2022-60</u>)

CESM2-S2S

- CESM run in initialized climate prediction mode is competitive with operational systems
- Initialization using reanalysis-forced simulations (used by WGs for model development) narrows the gap between model development & prediction application

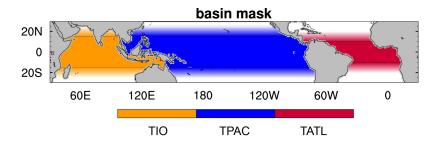

(inquire for access)

- CESM2 S2S single- and dual-climo initialization reforecasts (CAM6)
 - CESM2-S2S used as control reforecast set
 - 11-member, 45-day ensembles initialized weekly (1999-2020)
 - Ref: Richter et al., 2024 (doi:<u>10.1038/s41612-024-00595-4</u>)

Quantifying sources of subseasonal prediction skill in CESM2

Jadwiga H. Richter [⊠], Anne A. Glanville, Teagan King, Sanjiv Kumar, Stephen G. Yeager, Nicholas A. Davis, Yanan Duan, Megan D. Fowler, Abby Jaye, Jim Edwards, Julie M. Caron, Paul A. Dirmeyer, Gokhan Danabasoglu & Keith Oleson

npj Climate and Atmospheric Science 7, Article number: 59 (2024) | Cite this article

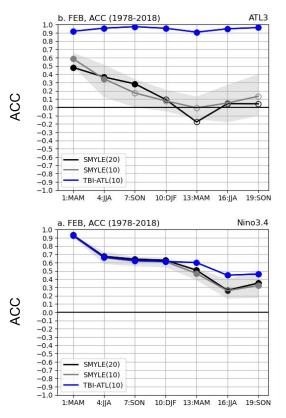

(inquire for access)

The Tropical Basin Interaction Model Intercomparison Project (TBIMIP)

Ingo Richter ⊠, Ping Chang, Gokhan Danabasoglu, Dietmar Dommenget, Guillaume Gastineau, Aixue Hu, Takahito Kataoka, Noel Keenlyside, Fred Kucharski, Yuko Okumura, Wonsun Park, Malte Stuecker, Andrea Taschetto, Chunzai Wang, Stephen Yeager, and Sang-Wook Yeh

https://doi.org/10.5194/egusphere-2024-3110

- CESM2 SMYLE-TBIMIP pacemaker reforecasts
 - CESM2-SMYLE used as control reforecast set
 - 10-member, 23-month ensembles initialized Feb. 1 1982-2021
 - 3 different reforecast sets with anomaly SST restoring in each of: TIO, TPAC, TATL
 - Ref: Richter et al., 2025 (doi:<u>10.5194/egusphere-2024-3110</u>)



(inquire for access)

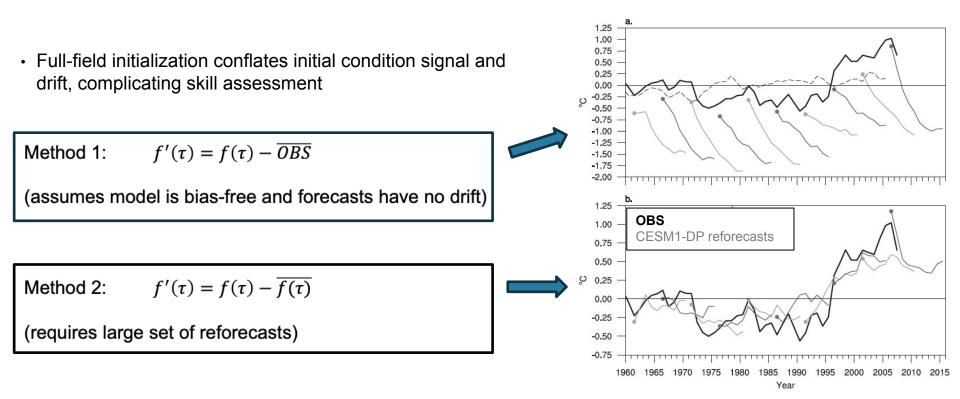
- CESM2 SMYLE-TBIMIP pacemaker reforecasts
 - CESM2-SMYLE used as control reforecast set
 - 10-member, 23-month ensembles initialized Feb. 1 1982-2021
 - 3 different reforecast sets with anomaly SST restoring in each of: TIO, TPAC, TATL
 - Ref: Richter et al., 2025 (doi:<u>10.5194/egusphere-2024-3110</u>)

SST Skill:

Forecast Lead (months) : Target Season

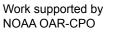
(inquire for access)

- CESM2 multidecadal prediction (MDP) reforecasts
 - Extensions of CESM2-DP
 - 10-member, 20-year ensembles initialized Nov. 1 {1960,1965,...,2015, 2023}
 - Contributed to EU-ASPECT multi-model study



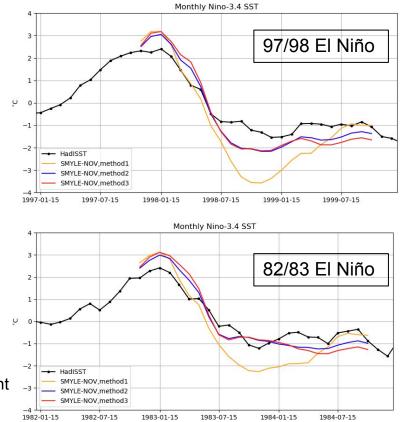
ESPWG Ongoing & Future Work

- CESM2 S2S/CAM6 sensitivity reforecasts
 - DART atmosphere/land initialization (Glanville/Raeder)
 - stochastic physics & assimilation-based nudging (Berner/Chapman)
 - machine-learned online error correction (Berner/Chapman)
 - land-atmosphere coupling (Fowler/Richter/Glanville)
- Decadal prediction mechanism experiments
 - coupled ensemble experiments with MOV-based "external" forcing
 - in support of DCPP protocol for CMIP7
- · Support the CESM-wide collective effort to test CESM3 in initialized prediction mode
 - perform limited sample hindcast sets to compare against CESM2-S2S, CESM2-SMYLE
 - production hindcasts in 2026?
- Advance capability for initialized prediction case studies



Towards Initialized Prediction Case Studies

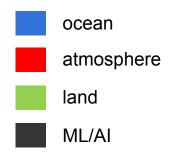
Towards Initialized Prediction Case Studies



Method 3*: $f'(\tau) = f(\tau) - F(\tau)$

where F is a climatology-initialized reforecast

* In collaboration with Yuanpu Li and Xian Wu


- Cost comparison (20-member, 12-month reforecast): Method 1: 20 sim-year Method 2: 600 sim-year Method 3: 40 sim-year
- Work is ongoing to assess efficacy of method across subseasonal, seasonal, and decadal timescales
- Prediction case studies as a potential new tool for model development & parameter testing?

ESPWG session on Wednesday

 Talks span a broad spectrum of disciplines, models, & methods

Wednesday, February 5th, Main Seminar Room

* All times are MST; Speakers: please leave 5 min at the end of your slot for questions.

9:00 oceanic Rossby waves (Ref 9:20 North Pacific meridional mode has larger impacts on El Niño Yu L 9:20 North Pacific meridional mode has larger impacts on El Niño Yu L 9:20 Predictability of the 2020 Strong Vortex in the Antarctic Yu L 9:40 Predictability of the 2020 Strong Vortex in the Antarctic Julie 10:00 Ensemble reuse: Impact of soil moisture guided ensemble Dais 10:00 BREAK Dais 10:40 An Earth-System-Oriented View of the S2S Predictability of North Jhay American Weather Regimes Can Transfer Learning be Used to Identify Tropical Kirs 11:00 State-Dependent Bias Relevant to Midlatitude Subseasonal Kirs Predictability? Developing a Eramework for Evaluating Sources of Predictability Kirs	
9:00 oceanic Rossby waves (Ref 9:20 North Pacific meridional mode has larger impacts on El Niño Yu L 9:20 North Pacific meridional mode has larger impacts on El Niño Yu L 9:20 Predictability of the 2020 Strong Vortex in the Antarctic Yu L 9:40 Predictability of the 2020 Strong Vortex in the Antarctic Julie 10:00 Ensemble reuse: Impact of soil moisture guided ensemble Dais 10:00 BREAK Dais 10:40 An Earth-System-Oriented View of the S2S Predictability of North Jhay American Weather Regimes Can Transfer Learning be Used to Identify Tropical Kirs 11:00 State-Dependent Bias Relevant to Midlatitude Subseasonal Kirs Predictability? Developing a Eramework for Evaluating Sources of Predictability Kirs	
9:20 evolution than the March Madden-Julian Oscillation (Ref 9:40 Predictability of the 2020 Strong Vortex in the Antarctic Stratosphere and the Role of Ozone Julie 10:00 Ensemble reuse: Impact of soil moisture guided ensemble sub-selection on the forecast skill of air temperature Dais 10:20 BREAK Image: Stratosphere Regimes Dais 10:40 An Earth-System-Oriented View of the S2S Predictability of North American Weather Regimes Jhay (Ref 11:00 State-Dependent Bias Relevant to Midlatitude Subseasonal Predictability? Kirs	n Wu emote)
9:40 Stratosphere and the Role of Ozone Julie 10:00 Ensemble reuse: Impact of soil moisture guided ensemble sub-selection on the forecast skill of air temperature Dais 10:20 BREAK Dais 10:40 An Earth-System-Oriented View of the S2S Predictability of North American Weather Regimes Jhay (Rei 11:00 Can Transfer Learning be Used to Identify Tropical Kirs 11:00 State-Dependent Bias Relevant to Midlatitude Subseasonal Predictability? Kirs	Liang emote)
10:00 sub-selection on the forecast skill of air temperature Data 10:20 BREAK Initial 10:40 An Earth-System-Oriented View of the S2S Predictability of North American Weather Regimes Jhay (Regimes) 10:40 Can Transfer Learning be Used to Identify Tropical Kirs 11:00 State-Dependent Bias Relevant to Midlatitude Subseasonal Predictability? Kirs	e Arblaster
10:40 An Earth-System-Oriented View of the S2S Predictability of North American Weather Regimes Jhay (Rei Can Transfer Learning be Used to Identify Tropical 11:00 State-Dependent Bias Relevant to Midlatitude Subseasonal Predictability? Kirs	suke Tokuda
10:40 American Weather Regimes (Rei Can Transfer Learning be Used to Identify Tropical 11:00 State-Dependent Bias Relevant to Midlatitude Subseasonal Kirs Predictability? Developing a Framework for Evaluating Sources of Predictability Rei	
11:00 State-Dependent Bias Relevant to Midlatitude Subseasonal Predictability?	iyron Perez mote)
Developing a Framework for Evaluating Sources of Predictability	sten Mayer
11:20 for Extreme Events on Subseasonal Timescales in Southeast Asia	brielle Brown mote)
11:40	drea Molod mote)
12:00 LUNCH	
1:00 Investigating the limited role of land on atmospheric predictability In CESM2	g Fowler
1:20 Do Al Models Produce Better Atmospheric River Forecasts than Physics Based Models? A Quantitative Evaluation	ac Davis
1:40 ESPWG Discussion	
2:00 BREAK	