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Systematic Errors
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Hybrid (Physics + Machine Learning) Earth System Models (ESM)

based on Lee et al., IPCC WGI AR6 Ch4, 2021

Eyring et al., IPCC WGI AR6 Ch3, 2021

- Research tool for

understanding Earth system

processes and feedbacks

- Detection and Attribution

- Climate Projections

Coupled Model Intercomparison Project (CMIP) 

Hybrid (physics + ML) ESM
ICON-XPP-ML
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ICON Storm Resolving Model Simulations

NARVAL, QUBICC, DYAMOND (~2-5 km)
- Explicit treatment of (deep) convection 

- Improved representation of clouds & convection 

(Stevens et al. 2020, Hohenegger et al. 2020) 

1. Cloud cover parameterization: Feedforward NN for ICON

Coarse-graining

Coarse-grained 
state variables Coarse-grained 

cloud cover

ML-based scheme

Storm-Resolving Models (SRMs) 

Our approach

Temperature

Humidity

Pressure

Water vapor

Cloud water

Cloud ice

Potential features

Cloud cover

Target

Estimated as a diagnostic 

(Sundqvist et al., 1989)

• Based on relative humidity (RH)

• And a semi-empirical 

parameterization with tuning 

parameters

• Cloud cover exists whenever RH 

exceeds a critical RH level (T,p)

Grundner et al., DL Based Cloud Cover Parameterization for ICON, https://doi.org/10.1029/2021MS002959 (2022)

ML simulation accurately learns highres

https://doi.org/10.1029/2021MS002959


ML-based subgrid scale parametrization (offline)

Improved Earth 

system understanding

Improved climate 

projections

Improved trust, interpretability & 

generalization, acceleration

Causal NN Physical constraints

EQ discovery

Cloud-Resolving Models (CRMs) 

Coarse-graining

Different types of NNs

Coarse-grained 

state variables
Coarse-grained 

physics tendencies
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• ML Equation Discovery for Cloud Cover (Grundner et al., 

2024, https://doi.org/10.48550/arXiv.2304.08063)

• Interpretable multiscale ML-based Convection for ICON 

(Heuer et al., 2023, https://doi.org/10.1029/2024MS004398)

• Causally-informed ML parameterizations                   

(Iglesias-Suarez et al., 2024, 

https://doi.org/10.1029/2023JD039202)

• Causal Neural Networks (Kühbacher et al., ECAI 2024, 

https://arxiv.org/abs/2406.03920)

• Stochastic NN (Behrens et al., submitted, 

https://doi.org/10.48550/arXiv.2402.03079)

• ML-based Radiation Emulation (Hafner et al., submitted, 

https://doi.org/10.22541/essoar.173169996.65100750/v1 )

https://doi.org/10.48550/arXiv.2304.08063
https://doi.org/10.1029/2021MS002959
https://arxiv.org/abs/2406.03920
https://doi.org/10.48550/arXiv.2402.03079
https://doi.org/10.22541/essoar.173169996.65100750/v1
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2. Cloud cover parameterization: Data-Driven Equation Discovery

− Novel highly accurate, physically consistent, interpretable data-

driven equation for cloud cover

− Retune. Both NNs and EQ run stable in online ICON simulations,

significantly reducing biases in cloud cover compared to Sundqvist 

C: cloud cover

RH: Relative Humidity

qc: cloud water

qi: cloud ice

More accurate
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Grundner et al., JAMES (2024) https://doi.org/10.48550/arXiv.2304.08063

Jointly minimizing error & complexity in a well-defined plane

https://doi.org/10.48550/arXiv.2304.08063
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3. Convection parameterization: Interpretable multiscale UNET, Bi-LSTM

OFFLINE ICON

− We benchmarked different ML models and U-Net

outperformed other ML models

− SHAP values identified non-causal connections for

U-Net to precipitating tracer species

− Ablated U-Net (excludes precipitating tracer

species) shows better extreme precipitation

predictions

Heuer et al., JAMES, 2024; https://doi.org/10.1029/2024MS004398

ONLINE ClimSim Bi-LSTM coupled to ICON:  

− 1 year stable ICON simulation is already possible, smoothing 

effect substantially reduced compared to ablated U-Net

OFFLINE ClimSim (Yu et al., CliimSim, NeurIPS 2024)

− Bidirectional Long Short-Term Memory (Bi-LSTM) inspired 

from Kaggle Competition

− Substract radiative tendencies from other CRM tendencies

− Introduce memory to the two last timesteps 

− Also include pressure as input as ICON has different height 

levels compared to ClimSim

Heuer et al., in prep.



4. Radiation emulation  &  Boundary Layer Height scheme

Interpretable ML-based radiation emulation for ICON

− Neural Networks can efficiently and accurately emulate ICON’s 

radiation scheme RTE+RRTMGP (Pincus et al. 2019)

− Neural networks are statistically energy consistent without 

explicitly enforcing it during training 

− BiLSTMs learn physically meaningful relationships related to 

locality such as thermal emission and non-locality such as 

reflection by clouds 

Hafner et al., JGR: MLC subm., Preprint: https://doi.org/10.22541/essoar.173169996.65100750/v1

DL-based Boundary Layer Height (BLH)

• Reduced biases and numerical artifacts

• Diurnal BLH cycle improved, BLH higher in DNN

• Stable Long-Term Runs: 35-year AMIP 

• Stat. significant difference for various key indicators of 

climate change (e.g. BLH, surface T)

• Could reduce ICON‘s cloud cover bias together with ML-

cloud cover parameterization

Mean differences (DNN– cl. BLH scheme)

DNN – HR (cl.) BLH

LR – HR BLH (cl.)
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https://doi.org/10.22541/essoar.173169996.65100750/v1
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ML-based hybrid Earth System Models show reduced systematic errors

Precipitation / mm h-1

Highres simulation

Full U-Net

Conventional Scheme

Ablated U-Net

Iglesias-Suarez et 

al., JGR, 2024 

ML-based convection parmetrizations Ablated UNET

=> Improved extreme precipitation (ICON-A)

Behrens et al., 

JAMES, subm.

https://arxiv.org/abs/2402.03079

Grundner et al., in prep.

Klamt et al., in prep.

Causally-informed Neural network SPCAM:

Improved simulation of the ITCZML-based cloud cover & BLH in ICON-ML

=> Improved cloud cover (ICON-A)

Heuer et al., 

JAMES, 2024

ML-based stochastic parametrizations

=> Improved diurnal cycle of precipitation (CESM)

https://arxiv.org/abs/2402.03079


Implement data-driven cloud 
cover equation 𝒇 in ICON-A

‘ICON-ML’ 
model Longwave cloud 

radiative effect
zonal means

Radiative 
balance

timeseries

Shortwave cloud 
radiative effect

zonal means

90S 90NEQ

1980 20001990

Problem: far off from observations 
and CMIP6 models

Grundner et al., JAMES, 2024

20-year ICON-ML AMIP with data-driven cloud cover equation 
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Figure taken from Mishra et al. (2023)

Figure taken from Krishnadasan et al. (2010)
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Tuning ICON-XPP-Mle with Nelder-Mead Algorithm

Nelder-Mead (also called downhill simplex method) uses a simplex shape (vertices = dimensions +1)

1. Forms triangle around 𝒇(𝑃𝑎𝑟𝑎𝑚𝑖𝑛𝑖𝑡) 

2. Evaluates function that is to be minimized

3. Iteratively modifies placement of vertices (several options)

4. Until stopping criteria

Advantages

• Relatively fast and computationally cheap method for tuning

• Doesn’t need to know the gradient of the function that is to be minimized

• Yields good results after few iterations (compared to other methods). 

• Efficient for low-dimensional problems. 

Disadvantages

• Can get stuck in a local minimum 

• Depends strongly on initial parameters. 

• Can spend a lot of time for negligible improvements in later iterations

Grundner, A., in prep., 2025



→ Efficient, easily extendible, automatic tuning pipeline (could also be a good method to tune km-scale models)

Grundner, A., T. Beucler, J. Savre & V. Eyring, Reduced cloud cover errors in hybrid climate models 

through a novel combination of data-driven parameterizations and automatic tuning, in prep., 2025

ONLINE: Tune the ICON-ML model in simulations of increasing length!

Implement data-driven cloud 
cover equation 𝒇 in ICON-A

Typical ICON-A tuning parameters 
𝑃𝐼𝐶𝑂𝑁 + Metrics M that ought to 

be satisfied by the tuning process 

Nelder-Mead optimizes tunable 
parameters 𝑃𝑓 and 𝑃𝐼𝐶𝑂𝑁 such 

that ICON-ML(𝑃𝑓 ∪ 𝑃𝐼𝐶𝑂𝑁) 

satisfies all metrics M in T-long 
simulations. 

‘ICON-ML’ 
model

Final ICON-ML 
model. Test in 

20-year 
simulations.

Begin with T = two days, set 
to a week/month/year 

in subsequent iterations.

Online tuning

11
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Tuning cloud cover equation discovery 

Intermediate tuning steps involving 

week- and month-long ICON-ML 

simulations

We couldn’t find any diagnostics in our large 
evaluation recipe in which ICON-ML did 
worse than ICON-A.

 We will implement this in our ICON-XPP-
MLe prototype for CMIP7

 We are happy to share with CESM
 Exchange other ML parametrizations or 

submodules with CESM

Grundner, A., in prep., 2025



ML-based Automatic Tuning Framework for ICON

Bonnet & Pastori et al., EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-2508, 2024 (ICON Atmosphere)

Bouman et al., in preparation, 2024  in collaboration with Katie Dagon and Linnia Hawkins (ICON Land-atm coupling) 
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History Matching (HM)

• Balance between exploration of the 
parameter space and exploitation of the 
already explored, and potentially 
promising, parameter regions.

This exploration-exploitation tradeoff is 
achieved by shrinking the parameter 
space according to an implausibility 
criterion.

• Only parameters which the emulator finds 
promising (i.e, (𝑦emul(𝜽) − 𝑦obs)

2 is 
small), or where the emulator is very 

uncertain (i.e., 𝜎emul
2 𝜽 is large), will be 

kept in the next iteration of the protocol.

https://egusphere.copernicus.org/preprints/2024/egusphere-2024-2508/


Evaluation of Native Model Output with ESMValTool, also compared to CMIP

“Community-developed open-source diagnostic and performance 

metrics tool for routine evaluation of Earth system models.”

GitHub: https://github.com/ESMValGroup/ESMValTool

• Reading of native model output, currently: CESM2, EC-Earth3, EMAC, ICON, and IPSL-CM6.

• No postprocessing (e.g., CMORization) necessary

• This output can be processed like any other CMIP model within ESMValTool

• Monitoring of simulation available now, but also allows benchmarking of simulations to other 

CMIP models and observations before submission to the ESGF (or other archives)

Schlund et al., GMD, 2023 Contact: Manuel.Schlund@dlr.de 
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https://github.com/ESMValGroup/ESMValTool
mailto:Manuel.Schlund@dlr.de
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USMILE Goal for CMIP7

Macro

Meso

Micro

CMIP7 (DECK + historical)

Hybrid ICON-MLe

ML-based parametrizations

Coupled hybrid 

model

ICON-XPP-ML

Better & faster

Ensembles

Hybrid model

ICON-XPP-ML Atm.

ICON-XPP-ML LandHybrid CESM-MLe

Goal: Protoytpes CESM-

MLe and ICON-XPP-MLe

Minimum: AMIP

Ideally: coupled

Sharing expertise and ML

parameterizations within

implementation groups
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AI-empowered Next-generation Multiscale Climate Modeling for Mitigation and Adaptation

Eyring, V., P. Gentine, G. Camps-Valls, D. M. Lawrence, M. Reichstein, Nat. Geosci., https://doi.org/10.1038/s41561-024-01527-w, 2024  

https://rdcu.be/dU3IS
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Recommendations

- To fully embrace hybrid Machine Learning Earth system modelling

- does not mean that Earth system modelling developments disappears, in contrast

- Provides ESM with significantly reduced systematic errors that are just in the way for everybody

- To make ML an integral part of your Earth system modelling strategy

- fully integrate in CESM developments alongside enhancements in Earth system processes / components

- work across scales and complexity

▪ ML for acceleration so to also run coarser-ESMs at higher resolution as we move forward

▪ offers regionalization through ML-based downscaling and regional refinement of hybrid models

▪ allows creation of large ensembles

▪ Also allows to enhance km-scale models with a similar approach (e.g., turbulence, shallow clouds)

- Prototype hybrid model for CMIP7 (or on this timescale)

- to jointly develop prototype hybrid models (CESM-MLe and ICON-XPP-MLe)

- at least AMIP / LMIP / OMIP, but ideally coupled

- To secure some of the AI funds (while aiming high and thinking big)

- To move ML forward, we organize

- Gordon Research Conference Machine Learning for Actionable Climate Science, 22-27 June, Bryant U

- Planning on AGCI workshop proposal on ML for Earth system predictability or ML for hazard

management together with NCAR CGD

WEyring, V., P. Gentine, G. Camps-Valls, D. M. Lawrence, M. Reichstein, Nat. Geosci., https://doi.org/10.1038/s41561-024-01527-w, 2024  

https://www.grc.org/machine-learning-for-actionable-climate-science-conference/2025/
https://rdcu.be/dU3IS
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