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S usmiLe Hybrid (Physics + Machine Learning) Earth System Models (ESM)

Coupled Model Intercomparison Project (CMIP)

Svstematic Error Precipitation bias (1995-2014) to Near-surface air temperature
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¥ USMILE 1. Cloud cover parameterization:
Estimated as a diagnostic fraction over Barbados (Crueger o a. 2076)
(Sundguvist et al., 1989) 80 - :Eggmfﬁﬁs;wét_ions

« Based on relative humidity (RH) R AV I=Models

ICON-R2B6 40km

« And a semi-empirical 50 \ oS4 teDion
parameterization with tuning -
parameters = 40 -
« Cloud cover exists whenever RH | *
exceeds a critical RH level (T,p) 20 |} Overestimation
~— Underestimation

0.0 F T T T T 1
0.00 0.03 0.06 0.09 0.12 0.15
cloud fraction

Feedforward NN for ICON

ICON Storm Resolving Model Simulations

NARVAL, QUBICC, DYAMOND (~2-5 km)
- Explicit treatment of (deep) convection
- Improved representation of clouds & convection
(Stevens et al. 2020, Hohenegger et al. 2020)

ML simulation accurately learns highres

Potential features

Temperature / Storm-Resolving Models (SRMs)

Humidity

Coarse-graining
Pressure

Water vapor

Cloud water Coarse-grained
state variables

Cloud ice \ Our approach cloud cover / 0
0.0 0.5 1.0
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ML-based scheme

Coarse-grained

Grundner et al., DL Based Cloud Cover Parameterization for ICON, https://doi.org/10.1029/2021MS002959 (2022) Cloud cover
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Cloud-Resolving Models (CRMs)

projections

ML Equation Discovery for Cloud Cover (Grundner et al.,
2024, https://doi.org/10.48550/arXiv.2304.08063)

Interpretable multiscale ML-based Convection for ICON
(Heuer et al., 2023, https://doi.org/10.1029/2024MS004398)

Causally-informed ML parameterizations
(Iglesias-Suarez et al., 2024,
https://doi.org/10.1029/2023JD039202)

Causal Neural Networks (Kuhbacher et al., ECAI 2024,
https://arxiv.org/abs/2406.03920)

Stochastic NN (Behrens et al., submitted,
https://doi.org/10.48550/arXiv.2402.03079)

ML-based Radiation Emulation (Hafner et al., submitted,
https://doi.org/10.22541/essoar.173169996.65100750/v1 )

Coarse-graining
| |
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Coarse-grained
state variables

Improved climate

ML-based subgrid scale parametrization (offline) \
Different types of NNs
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Coarse-grained
physics tendencies

Improved Earth
system understanding
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e USMILE 2. Cloud cover parameterization: Data-Driven Equation Discovery

— Novel highly accurate, physically consistent, interpretable data- f(RH,T,8,RH, q.,q;) = ,(RH,T) + I,(0,RH) + I3(q., ¢;),
driven equation for cloud cover
— Retune. Both NNs and EQ run stable in online ICON simulations, (3,RH) = def 3 (3ZRH 3a 7) (9,RH)?
significantly reducing biases in cloud cover compared to Sundqgvist
Jointly minimizing error & complexity in a well-defined plane
105 R 005 r1>00 1500m, 11-20 August 2016
R /> Boxes from Muhlbauer et al., 2014
A {ps}{9:TH{a;:RH} Physical Constraints
o 109 {a:} {an {RH} 1 [ PCy: C(X) €(0,1001%
o - . PCs: (¢eyqi) =0=C(X) =0
£ {220} —— Pareto frontier PC3: 9C(X)/ORH > 0
.3103« g;ﬂ;NNS PCy: 0C(X)/0q. > 0
S SFS Linear fits S | PCs: 9C(X)/0g: 2 0
3 102 | SFS Polynomials { PCg: 0C(X)/0T <0
£ | | PC7: C(X) is a smooth function
2} =z >
= .. = C: cloud cover
oS 104 ERAE, _ . -
o) /GPGOMEA . RH: Relative Humidity
- Xu-Randall : remers qc: cloud water
v

gi: cloud ice

102 103
MSE on validation set

<More accurate
‘#7 @ Grundner et al., JAMES (2024) https://doi.org/10.48550/arXiv.2304.08063
DLR
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OFFLINE ICON
— We benchmarked different ML models and U-Net
outperformed other ML models
— SHAP values identified non-causal connections for
U-Net to precipitating tracer species

— Ablated U-Net (excludes precipitating tracer
species) shows Dbetter extreme precipitation
predictions

Full U-Net

Conventional Scheme

Ablated U-Net

e

'~ Precipitation / mm h-

3. Convection parameterization: Interpretable multiscale UNET, Bi-LSTM

OFFLINE ClimSim (Yu et al., CliimSim, NeurlPS 2024)

— Bidirectional Long Short-Term Memory (
from Kaggle Competition

— Substract radiative tendencies from other CRM tendencies
— Introduce memory to the two last timesteps

— Also include pressure as input as ICON has different height
levels compared to ClimSim

) inspired

ONLINE ClimSim Bi-LSTM coupled to ICON:
— 1 year stable ICON simulation is already possible, smoothing
effect substantially reduced compared to ablated U-Net

1979-01-01 00:00:00
180°  120°W  60°W 0° 60°E 120°E 180°

60°N 60°N

30°N 30°N
0° 0°
30°s * 30°S
60°S

Heuer et al., in prep.

60°S

180°  120°W  60°W 0° 60°E 120°E 180°
0 10 20 30 40 50 60

Vertically Integrated Water Vapour / kg m-2

D

‘#7 'U' Heuer et al., JAMES, 2024; https://doi.org/10.1029/2024MS00439&
LR



¥ usmiLe 4. Radiation emulation & Boundary Layer Height scheme

Interpretable ML-based radiation emulation for ICON

— Neural Networks can efficiently and accurately emulate ICON’s '550':5-?_( : 101 §
radiation scheme RTE+RRTMGP (Pincus et al. 2019) 2 [REE ©
— Neural networks are statistically energy consistent without 33_10,; ', f 10° >
explicitly enforcing it during training E, JE _17%
— BILSTMs learn physically meaningful relationships related to © Lol (130 *

1 10 50

locality such as thermal emission and non-locality such as
cloud fr. [km]

reflection by clouds

Hafner et al., JGR: MLC subm., Preprint: htips://doi.org/10.22541/essoar.173169996.65100750/v1
_ LR-HRBLH (cl.)

DL-based Boundary Layer Height (BLH)
* Reduced biases and numerical artifacts
* Diurnal BLH cycle improved, BLH higher in DNN
« Stable Long-Term Runs: 35-year AMIP

180

=g Mean dlfferences (DNN- cl. BLH scheme)

« Stat. significant difference for various key indicators of DNN HR (c| ) BLSH
climate change (e.g. BLH, surface T) s

« Could reduce ICON's cloud cover bias together with ML- Lns {00000
cloud cover parameterization

University 75 [RRRAROBER O] | 2
Of Bremen 25913; .—~130 —’12‘5 —120. —115. 110 105
Longitude (degrees)
DLR
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ML-based convection parmetrizations Ablated UNET

=> [mproved extreme preC|p|tat|on (ICON-A)

FuII U- Net

Heuer et al.,
JAMES, 2024  v’:

i
| }fl'
l
104 4

1”4

Conventional Schemg

ié\blated U-Net

¥ USMILE ML-based hybrid Earth System Models show reduced systematic errors

ML-based stochastic parametrizations

Behrens et al.,
JAMES, subm.
https://arxiv.org/abs/2402. 03079

=> [mproved diurnal cycle of precipitation (CESM)

(d) ZM-CESM

'
|
1
|
0% ‘ }
10°¢ 5 I I ” i

0 5 10 15 20 25 30 35 40

Precipitation /' mm h-

ML-based cloud cover & BLH in ICON-ML

=> [mproved cloud cover (ICON-A)
ICON-ML - OBS (RMSE = 12.30%)

. 30°N
Grundner et al., in prep.

Klamt et al., in prep.

30°S

0 4 8 12 16 20 24
Hour of Daily Precipitation Peak Local Solar Time

Causally-informed Neural network SPCAM:

Improved simulation of the ITCZ

2. e SPCAM
C o e Non-causalNNCAM
uC:) I> 15 - wes Causally-informedNNCAM
o ©
2 T
S € 101 lglesias-Suarez et
Q£ s al., JGR, 2024
x
0_

90°S  30°S EQ. 30°N  90°N

i DLR
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¥ usmiLe 20-year ICON-ML AMIP with data-driven cloud cover equation
Problem: far off from observations /
and CMIP6 models Shortwave cloud
radiative effect
zonal means
ICON-ML’
Implement data-driven cloud model Longwave cloud
. . radiative effect
cover equation f in ICON-A 4 sonal means
/T(RH.T,0.RH,q..q) = L,(RH.T) + L(0.RH) + Iy(g..q,). N\
» L _ e - o Radiative v
I(RH,T) = a1 + ay(RH — RH) + a3(T = T) + - (RH - RH)* + —(T — T)*(RH - RH) balance —.. MERRA2
L(@.RH) % a2 (azRH+ 37) (9.RH)? timeseries |77 o

‘ 1 - ~
IB(QC; Qt) d=f : ) Grundner et al., JAMES, 2024 1980 1990 2000
qe/as +qifas + €

(81 « o a9, €} = {0.4435,1.1593,-0.0145K!,4.06,1.3176 - 10> K2,
\? 584.8036m,2km ™, 1.1573 mg/kg, 0.3073 mg /kg, 1.06} /

DLR




E¥FusmiLe Tuning ICON-XPP-Mle with Nelder-Mead Algorithm

Nelder-Mead (also called downhill simplex method) uses a simplex shape (vertices = dimensions +1)

1. Forms triangle around f(Param;,;;) i s reﬂeCt ______ o’
2. Evaluates function that is to be minimized .."""--.P' /
3. Iteratively modifies placement of vertices (several options) o expand
4. Until stopping criteria J::,:,..
o

Advantages sheink Pmax
« Relatively fast and computationally cheap method for tuning Figwe talken ffom "\I/"ishrﬁ et a{- (20?3)

top=r-axrp—y—xy * 7 7

» Doesn'’t need to know the gradient of the function that is to be minimized iy

* Yields good results after few iterations (compared to other methods).
« Efficient for low-dimensional problems.

Disadvantages S s,

« Can get stuck in a local minimum ost ; | \ /,':j}-
» Depends strongly on initial parameters. of "‘\.\ Sy
« Can spend a lot of time for negligible improvements in later iterations 05 5 \ \ \2'2:5335 ':’74

Q Grundner. A.. in prep 2025 Figure taken from Krishnadasan et al. (2010)
) " " 10
DLR



*LISITIILE ONLINE: Tune the ICON-ML model in simulations of increasing length!

ole ':.'.. :

Grundner, A., T. Beucler, J. Savre & V. Eyring, Reduced cloud cover errors in hybrid climate models
through a novel combination of data-driven parameterizations and automatic tuning, in prep., 2025

‘ICON-ML’ Online tuning
Implement data-driven cloud model N
cover equation f in ICON-A — /
Nelder-Mead optimizes tunable Final ICON-ML
parameters P and Pjcop such model. Test in
that ICON-ML(P; U Pycop) e
satisfies all metrics M in T-long simulations.
Typical ICON-A tuning parameters N simulations.
P + Metrics M that ought to /
s cat /Begin with T = two days, set

be satisfied by the tuning process
to a week/month/year

in subsequent iterations.

—> Efficient, easily extendible, automatic tuning pipeline (could also be a good method to tune km-scale models)

i DLR 11
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¥ USMILE Tuning cloud cover equation discovery

Results improve drastically following the tuning pipeline

Grundner, A., in prep., 2025

Intermediate tuning steps involving
week- and month-long ICON-ML
simulations

Shortwave cloud
radiative effect
zonal means

We couldn’t find any diagnostics in our large
evaluation recipe in which ICON-ML did

Longwave cloud
radiative effect

worse than ICON-A.

= We will implement this in our ICON-XPP-

zonal means
MLe prototype for CMIP7
N 905 EQ —> We are happy to share with CESM
_ —> Exchange other ML parametrizations or
Radiative 2" e bmodules with CESM
balance —— ICON submodules wit
==:: MERRAZ
timeseries — CERES-EBAF 12
- = ISCCP-FH "\/\/\/\/\ :
1980 1990 2000 1980 1990 2000 1980 1990 2000 n NC AR
U d ICON'ML |CON'ML e r@E bt e d 5 ¥ UEc AR
Icrg:lnr.:ll after day-long after all tuning
i tuning runs iterations

12
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LISITIILE

Preliminary step: choose metrics to tune for and

identify parameters to tune (e.g., sensitivity analysis)

Iterative optimization: Bayesian scheme applicable

to costly ,black-box’ functions

model runs for randomly sampled parametet

. Fit ML model (emulator) to PPE
. Generate very large PPE with emulator
. Shrink parameter space (history matching)

’ 0) — v 2
IM(6) = O er;ml( ) ) ?’bs) 4
Gemul(o) + Oobs

Reiterate from PPE generation

distance from obs.

¥

model runs improve ML emulator
(sampling) (where to sample next)

-— )

output at

sampled /"*\.

/ points * \ *

emulator
prediction

parameters

ML-based Automatic Tuning Framework for ICON

History Matching (HM)

* Balance between exploration of the
parameter space and exploitation of the
already explored, and potentially
promising, parameter regions.

This exploration-exploitation tradeoff is
achieved by shrinking the parameter
space according to an implausibility
criterion.

* Only parameters which the emulator finds

promising (i.e, (Yemu1 (@) — 3’obs)2 IS
small), or where the emulator is very
uncertain (i.e., 62,,,(8) is large), will be
kept in the next iteration of the protocol.

Bonnet & Pastori et al., EGUsphere [preprint], htips://doi.org/10.5194/equsphere-2024-2508, 2024 (ICON Atmosphere)
Bouman et al., in preparation, 2024 in collaboration with Katie Dagon and Linnia Hawkins (ICON Land-atm coupling)

13
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¥ USMILE Evaluation of Native Model Output with ESMValTool, also compared to CMIP

“Community-developed open-source diagnostic and performance
ESMVG ITOOI metrics tool for routine evaluation of Earth system models.”

Earth System Model Evaluation Tool  GitHUb: https://oithub.com/ESMValGroup/ESMValTool

- Reading of native model output, currently: CESM2, EC-Earth3, EMAC, ICON, and IPSL-CM6.
- No postprocessing (e.g., CMORIization) necessary
- This output can be processed like any other CMIP model within ESMValTool

- Monitoring of simulation available now, but also allows benchmarking of simulations to other
CMIP models and observations before submission to the ESGF (or other archives)

Annual cycle (CESM2)

Near-Surface Air Temperature (tas) (K)

Ralative medet performanca

M
ean Near-Surface Air Temperature Over Tropical Land (30°S-30°N
790 haoep L. X i | % ( ) Near-Surfave Teaperare [Vl ; ATy AR Ay
285 o g § Totl Cloud Cover S A8 VUV WA VL1 UL L R VY L A J
o R g Precipcancn SV YA/ AT A AL A AT
2675 OE; 260 3 F TOA Oetpoing Shortwave Radanon
% ~— EMAC FOA Ougaing Longwave Raduanan
287.0 g _ERAS Sen Level Prassure '{ ;
2865 E: - IPSL-CM6 /;
286.0 Jv

RN

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Single model analysis Multi model analysis

! U Schlund et al., GMD, 2023 Contact: Manuel.Schlund@dlr.de
DLR
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USMILE Goal for CMIP7

operated By UGCAR

S mnns ZEESETS e Coupled hybrid
Macro CMIP7 (DECK + historical) S

model
Goal: Protoytpes CESM- = ICON-XPP-ML
MLe and ICON-XPP-MLe - b,,anabm‘:.,, ~ Better & faster
Minimum: AMIP Wiy Ensembles
Ideally: coupled

Sharing expertise and ML
parameterizations within
implementation groups

ICON-MLe . Hybrid model
ICON-XPP-ML Atm.
CESM-MLe ICON-XPP-ML Land
ML &
Physics

parametrizations

ML-based subgrid scale parametrization (offline) \
Cloud-Resolving Models (CRMs) .

Different types of NNs

Coarse-graining

2::?1?5;0“[:;?:: Coarse-grained
\ physics tendem:les

# U o




"‘ USMILE Al-empowered Next-generation Multiscale Climate Modeling for Mitigation and Adaptation

Hvybrid (physics + ML) ESM
ybrid (physics ) B ML downscaling/

‘ﬁ\(%zé: k regional refinement

S WTLIAVAVA
VAVAT.VAY
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Reduced systematic
errors and more accurate

Earth AT climate projections

observations ¢ > ! AW
B )ﬁ

-y 7\ A V. /
T AYAYAYL T
WAVAVAYAY

NN A Impact
: S & models <
A
Kilometre-scale . s VAV SVAVR ‘ | Actionable climate science
climate models -'*mi;.- IR VQAVAVA',’ e
AVAVAVAN 5 v AVAVAVAY N - |
A ;e:e'gexi;ig;@;;& \TAWLAY =
A eA‘ % 4
\"‘t&%":?fff"
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Bridging across scales —

« Higher resolution with new computing opportunities

- Improved with physics-aware ML

» Constrained and benchmarked with Earth observations
- Modern and operational science infrastructures

U Eyring, V., P. Gentine, G. Camps-Valls, D. M. Lawrence, M. Reichstein, Nat. Geosci., hitps://doi.org/10.1038/s41561-024-01527-w, 2024
# t } 16
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¥ usmiLe Recommendations  BRNCAR
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To fully embrace hybrid Machine Learning Earth system modelling
- does not mean that Earth system modelling developments disappears, in contrast
- Provides ESM with significantly reduced systematic errors that are just in the way for everybody

To make ML an integral part of your Earth system modelling strategy
- fully integrate in CESM developments alongside enhancements in Earth system processes / components
- work across scales and complexity
= ML for acceleration so to also run coarser-ESMs at higher resolution as we move forward
» offers regionalization through ML-based downscaling and regional refinement of hybrid models
= allows creation of large ensembles
= Also allows to enhance km-scale models with a similar approach (e.g., turbulence, shallow clouds)

Prototype hybrid model for CMIP7 (or on this timescale)
- to jointly develop prototype hybrid models (CESM-MLe and ICON-XPP-MLe)
- at least AMIP / LMIP / OMIP, but ideally coupled

To secure some of the Al funds (while aiming high and thinking big)

To move ML forward, we organize
- Gordon Research Conference Machine Learning for Actionable Climate Science, 22-27 June, Bryant U
- Planning on AGCI workshop proposal on ML for Earth system predictability or ML for hazard
manaaement toaether with NCAR CGD

Eyring, V., P. Gentine, G. Camps-Valls, D. M. Lawrence, M. Reichstein, Nat. Geosci., hitps://doi.org/10.1038/s41561-024-01527-w, 2024 17
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