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State-Dependent Predictability

Forecasts of Opportunity - certain conditions can lead to more predictable behavior than others

Madden-Julian Oscillation (MJO)
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MJO is a convective dipole that propagates from the Indian Ocean into the central Pacific Ocean over about 20-90 days




State-Dependent Predictability

Final layer uses the softmax function to convert

Identlﬁed by a neura| ne’[WOrk the output into two values that sum to one
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State-Dependent Predictability

When the value is closer to one, is the network

.. identified by a neural network more often correct?

° LOW confidence




State-Dependent Predictability

.. identified by a neural network
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Mayer and Barnes 2021, Geaphysical Research Letters,


https://doi.org/10.1029/2020GL092092

State-Dependent Predictability

.. identified by a neural network

100% ,
Forecasts of Opportunity
A periods of enhanced predictability identified
— using network confidence (Mayer & Barnes 2021)
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Mayer and Barnes 2021, Geaphysical Research Letters,


https://doi.org/10.1029/2020GL092092

State-Dependent Predictability

.. identified by an explainable neural network

dccuracy

confidence

with eXplainable Artificial Intelligence
(XAI), we can identify sources of
enhanced prediction skill



https://doi.org/10.1029/2020GL092092

State-Dependent Predictability Bias

.. identified by an explainable neural network

bias: systematic differences in sources of enhanced
predictability between model & obs

Mayer et al. (under review)



State-Dependent Predictability Bias

Transfer Learning

LOTS of data - hiased Original Neural Network

(trained with climate model data)

Final Neural Network
(updated with reanalysis data)

limited data - unbiased




State-Dependent Predictability Bias

Transfer Learning and XAl
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State-Dependent Predictability Bias

Transfer Learning and XAl

Trained on Biased Data
climate model + BIAS

To test the feasibility of this approach...
perfect model framework

Updated with Unbiased Data
climate model NO BIAS

Mayer et al. (under review)



State-Dependent Predictability Bias

The prediction problem
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State-Dependent Predictability Bias

Transfer Learning
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State-Dependent Predictability Bias

Transfer Learning

If transfer learning works... (once the network corrects the shift)
we expect the performance

post-TL network = pre-TL network

Mayer et al. (under review)



State-Dependent Predictability Bias

Transfer Learning
0@
85 1

Both networks are skillful 80-
and able to identify 5751
forecasts of opportunity

' pre-TL (with shift)
mmmm post-TL (without shift)

Transfer learning worked! 55 -
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Mayer et al. (under review)



State-Dependent Predictability Bias

Transfer Learning
(a)
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Let's pretend we don't 751
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forecasts of opportunity o
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State-Dependent Predictability Bias
Transfer Learning with XAl

(before transfer learning)
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Compare XAl Heatmap
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State-Dependent Predictability Bias
Transfer Learning with XAl

(a) Pre-TL: Biased Test Member (N=7768)
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Mayer et al. (under review)



State-Dependent Predictability Bias
Transfer Learning with XAl

(a) Pre-TL: Biased Test Member (N=7768)
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State-Dependent Predictability Bias
Transfer Learning with XAl

These results use NINE ensemble members to re-tune...
what if we only had ONE ensemble member

Mayer et al. (under review)



State-Dependent Predictability Bias

Transfer Learning

(b) post-TL accuracy
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State-Dependent Predictability Bias

(a) Pre-TL: Biased Test Member (N=7768) ) Post-TL [5]: Unbiased Test Member (N=7060)
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State-Dependent Predictability Bias
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State-Dependent Predictability Bias
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Can Transfer Learning identify Tropical State-Dependent

Bias Relevant to Midlatitude Subseasonal Predictability?

.. Kinda ...

but not with reanalysis
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State-Dependent Predictability Bias

Transfer Learning

(d) confident predictions

This is common across
different testing data.

O N WPHOITO N OO O
| I NN DN N N E——"

| l
- I
e

T T T T T

1 2 3 4 5 6 7 8 9 10+
# of re-training members

Mayer et al. (under review)



State-Dependent Predictability Bias

Convolutional Neural Network

(a) Pre-TL: Biased Test Member (N=7877
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