# Land carbon sinks under zero emissions and decarbonization

### Work with: Charlie Koven, Ben Sanderson, Flat I OMIP contributors

Funding from NSF

### Abigail Swann University of Washington



# Emissions-driven simulations show big spread in atm CO<sub>2</sub>

800

600

400

200

bpm

CMIP6 had a limited 1200 number of runs as part of C4MIP (~ $|2 \mod s$ ) 1000

CMIP7 will have more emissions-driven simulations

Atmospheric CO<sub>2</sub> concentration

CMIP6 model mean Concentration-driven Individual model

2100 2040 2020 2080 2060 1980 2000 1960

IPCC AR6 WGI, Fig. 4.3





## Spread in atm $CO_2 \Rightarrow$ spread in global temperature

### Atmospheric CO<sub>2</sub> concentration



### Global temperature change

IPCC AR6 WGI, Fig. 4.3





## Flat I 0 set of experiments $\Leftarrow$ part of Fast Track for CMIP7



Sanderson et al. in review





![](_page_6_Figure_0.jpeg)

![](_page_7_Figure_0.jpeg)

# Key metrics - TCRE and ZEC

### Transient Climate Response to Emissions TCRE

![](_page_8_Figure_2.jpeg)

AR6 WGI, Fig. SPM 10

# Key metrics - TCRE and ZEC

# to Emissions TCRE

![](_page_9_Figure_2.jpeg)

AR6 WGI, Fig. SPM 10

IPCC AR6 WGI Fig. 4.39

![](_page_9_Picture_5.jpeg)

![](_page_10_Figure_0.jpeg)

![](_page_10_Picture_2.jpeg)

![](_page_11_Figure_0.jpeg)

## Spread in carbon sink + physical climate impacts temperature ZEC 0.4 0.2 0.0 -0.2 -0.4 160 100 100 120 140 180 Years

![](_page_11_Picture_3.jpeg)

## Spread across PPE is large relative to spread across models

![](_page_12_Figure_1.jpeg)

![](_page_12_Figure_2.jpeg)

![](_page_12_Picture_4.jpeg)

![](_page_13_Figure_0.jpeg)

## Vegetation carbon accumulates during emissions

![](_page_13_Figure_2.jpeg)

![](_page_13_Figure_3.jpeg)

![](_page_13_Picture_5.jpeg)

![](_page_14_Figure_0.jpeg)

![](_page_14_Figure_2.jpeg)

![](_page_14_Figure_3.jpeg)

## Vegetation carbon starts to decline under zero emissions

flat | 0-zec

Years

![](_page_14_Picture_7.jpeg)

![](_page_15_Figure_0.jpeg)

![](_page_15_Figure_2.jpeg)

Years

![](_page_15_Picture_4.jpeg)

## Very different amount and location of land sink across models

flat I O-zec

![](_page_16_Figure_3.jpeg)

flat10-cdr

# Very different amount and location of land sink across models

![](_page_17_Figure_1.jpeg)

### Total carbon change after net-zero Carbon change after net-zero High latitude remains a sink in many models Tropical sink is lost is some models, but not others initial state beginning contation 80 60 40 0 4 6 — ACCESS-ESM1-5 — GISS PgC — NorESM2-LM ---- CNRM-ESM2-1 CESM2 — GFDL-ESM4

![](_page_18_Figure_2.jpeg)

![](_page_18_Picture_3.jpeg)

![](_page_19_Figure_2.jpeg)

### Initial carbon

### Fair amount of soil carbon to start

![](_page_20_Figure_2.jpeg)

![](_page_20_Figure_3.jpeg)

## Big differences in carbon pools and responses across models

![](_page_20_Picture_5.jpeg)

### Fair amount of soil carbon to start

![](_page_21_Figure_1.jpeg)

![](_page_21_Figure_2.jpeg)

Initial carbon

Carbon gained in emissions phase

## Big differences in carbon pools and responses across models

some change in soil carbon

almost no change in soil carbon

![](_page_21_Picture_8.jpeg)

# Many remaining questions!

- What controls difference in total land sink?
- What causes variations in the location of the land sink?
- How does location of land sink or source behavior impact TCRE, ZEC?

![](_page_22_Figure_5.jpeg)

Models are different  $\Rightarrow$  Why models are different